343 research outputs found
Recommended from our members
Social Capital: A review from an ethics perspective
In this paper we extend previous reviews of the social capital literature to encompass an ethics perspective. First, we update previous reviews of social capital. Social capital continues to gain currency in both academic and practical circles, despite relatively little critical reflection on the implications of promoting this popular concept. Our work goes some way to rectifying this paucity in understanding what has been termed the ‘dark side’ of social capital. In particular, we review the social capital concept from the perspective of three theories of business ethics: utilitarianism, justice and ethic of care. While the utilitarian perspective closely parallels accounts of social capital’s rationale, the concept’s operation is mirrored very closely by the assumptions underpinning the ethic of care, while the dark side of social capital is commonly given voice in justice-based critiques. We conclude by considering the implications of our analysis
Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND)
A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation
Recommended from our members
Focal optogenetic suppression in macaque area MT biases direction discrimination and decision confidence, but only transiently
Insights from causal manipulations of brain activity depend on targeting the spatial and temporal scales most relevant for behavior. Using a sensitive perceptual decision task in monkeys, we examined the effects of rapid, reversible inactivation on a spatial scale previously achieved only with electrical microstimulation. Inactivating groups of similarly tuned neurons in area MT produced systematic effects on choice and confidence. Behavioral effects were attenuated over the course of each session, suggesting compensatory adjustments in the downstream readout of MT over tens of minutes. Compensation also occurred on a sub-second time scale: behavior was largely unaffected when the visual stimulus (and concurrent suppression) lasted longer than 350 ms. These trends were similar for choice and confidence, consistent with the idea of a common mechanism underlying both measures. The findings demonstrate the utility of hyperpolarizing opsins for linking neural population activity at fine spatial and temporal scales to cognitive functions in primates
Isabelle Modelchecking for insider threats
The Isabelle Insider framework formalises the technique of social explanation for modeling and analysing Insider threats in infrastructures including physical and logical aspects. However, the abstract Isabelle models need some refinement to provide sufficient detail to explore attacks constructively and understand how the attacker proceeds. The introduction of mutable states into the model leads us to use the concepts of Modelchecking within Isabelle. Isabelle can simply accommodate classical CTL type Modelchecking. We integrate CTL Modelchecking into the Isabelle Insider framework. A running example of an IoT attack on privacy motivates the method throughout and illustrates how the enhanced framework fully supports realistic modeling and analysis of IoT Insiders
- …