1,409 research outputs found

    The Distinctively Basque Stone Shelters of California’s White Mountains

    Get PDF
    Basque and French shepherds in California’s White Mountains built dry stone shelters that persist today. Despite French names carved on logs associated with a few of these structures, the typical pattern for these shelters is Basque: they closely resemble the cabañas pastoriles (shepherd’s huts) of Bizkaia. A square floor plan with walls about one meter high enclose a single chamber. The stone work is carefully laid to make one wall face. A narrow doorway, often in a corner, faces downhill in any direction except west and can be flanked by low stone “spurs”. A fireplace is usually built into the south wall. Boulders too large to move are usually in the western wall or northwest corner. Metal, glass, wood, bone or leather artifacts are present. Typically Basque arborglyphs (carvings in aspen trees) are found nearby at lower elevations. It is unclear whether the White Mountains shelters originally had roofs

    Design of Cationic Multi-Walled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication

    Get PDF
    Polo-Like Kinase (PLK1) has been identified as a potential target in cancer gene therapy via chemical or genetic inhibitory approaches. The biomedical applications of chemically functionalized carbon nanotubes (f-CNTs) in cancer therapy have been studied due to their ability to efficiently deliver siRNA intracellularly. In this study, we established the capacity of cationic MWNT-NH3+ to deliver the apoptotic siRNA against PLK1 (siPLK1) in Calu6 tumor xenografts by direct intratumoural injections. A direct comparison with cationic liposomes was made. This study validates the PLK1 gene as a potential target in cancer gene therapy including lung cancer, as demonstrated by the therapeutic efficacy of siPLK1:MWNT-NH3+ complexes and their ability to significantly improve animal survival. Biological analysis of the siPLK1:MWNT-NH3+ treated tumors by RT-PCR and Western blot, in addition to TUNEL staining confirmed the biological functionality of the siRNA intratumourally, suggesting that tumor eradication was due to PLK1 knockdown. Furthermore, by using a fluorescently labelled, non-coding siRNA sequence complexed with MWNT-NH3+, we established for the first time that the improved therapeutic efficacy observed in f-CNT-based siRNA delivery is directly proportional to the enhanced siRNA retention in the solid tumor and subsequent uptake by tumor cells after local administration in vivo

    Assessment of disturbed voltage supply effects on steady-state performance of an induction motor

    Get PDF
    An electric power system is usually exposed to unequal and variable loads across its three phases, which leads to voltage unbalance and variation, making the three-phase voltages asymmetrical in nature at the distribution end. This problem is clearly evident in Iraq country, particularly with regard to the fluctuating voltage levels of electricity distribution during peak hours. Providing a three-phase motor with asymmetric voltages is badly affecting its working performance. Estimating the performance of this motor at steady-state under different conditions of voltage disturbances is investigated in this paper through Matlab simulation using Symmetrical component approach. The motor performance represented by active and reactive input powers, output put power, developed torque, power losses, efficiency and power factor is analyzed under full load conditions. Also, the steady-state power losses- and torque-slip characteristics at certain degrees of voltage unbalance have been calculated and plotte

    Squamous cell carcinoma of the tongue in a patient with rothmund-thomson syndrome (Recq4 Mutation) - intolerance to radiotherapy

    Get PDF
    We report a case of squamous cell carcinoma of the base of the tongue in a 27 years old patient with Rothmund-Thomson syndrome (RTS). An abnormal DNA repair mechanism in some RTS patients predispose them to malignancy and influence the tolerance to radiotherapy

    Bioinspired Polymerization of Quercetin to Produce a Curcumin-Loaded Nanomedicine with Potent Cytotoxicity and Cancer-Targeting Potential in Vivo

    Get PDF
    Nanomedicine has had a profound impact on the treatment of many diseases, especially cancer. However, synthesis of multifunctional nanoscale drug carriers often requires multistep coupling and purification reactions, which can pose major scale-up challenges. Here, we leveraged bioinspired oxidation-triggered polymerization of catechols to synthesize nanoparticles (NPs) from the plant polyphenol quercetin (QCT) loaded with a hydrophobic anticancer drug, curcumin, and functionalized with poly(ethylene glycol) (PEG) for steric stabilization in one reaction step. NPs were formed by base-catalyzed oxidative self-polymerization of QCT in the presence of curcumin and thiol-terminated PEG upon mixing in a universal solvent (dimethyl sulfoxide), followed by self-assembly with the gradual addition of water. Dynamic light scattering and X-ray photoelectron spectroscopy were used to confirm NP PEGylation. Drug loading was verified by UV–vis spectroscopy. Curcumin-loaded NPs were efficiently internalized by CT26 murine colon cancer cells as determined by flow cytometry and confocal microscopy. NPs also demonstrated sustained release and potent cytotoxicity in vitro. Moreover, in vivo imaging of CT26 tumor-bearing Balb/c mice following tail vein injection of DiR-labeled QCT NPs showed steady tumor accumulation of the NPs up to 24 h. This was further supported by significant tumor uptake of curcumin-loaded QCT NPs as measured by flow cytometry analysis of tumor homogenates. Our findings present a greener synthetic route for the fabrication of drug-loaded surface-functionalized NPs from poorly water-soluble plant polyphenols such as QCT as promising anticancer delivery systems

    Radiation Protection Measures in Radio-Diagnostic Centers in Gaza Hospitals, Palestine

    Get PDF
    Whereas radio-diagnostic centers have potential to present hazardous effects due of ionizing radiation. Radio-diagnostic workers awareness, practices regarding radiation protection issues, availability of radiation protection devices and effective personal radiation exposure monitoring process has an important role to safe working in these places. We carried out this study in nine governmental Gaza governorates hospitals. The study instrument was close-ended structured questionnaire consists of five parts. 182 radio-diagnostic workers participated in the work. Based on the obtained data, the participants reported that 35.2% of personal radiation protection devices are available in the radio-diagnostic centers at governmental Gaza governorates hospitals. In spite the fact that 74.8% of participants have awareness about radiation protection issues, but it is only about 53.4% of participants follows the radiation protection practices. There is an obvious poor of personal radiation exposure monitoring process. Conclusively, the results represented in this work reflect that majority of participants believe there is no radiation safety officer to provide the service. Therefore, there is a desperate need for rules, regulations and radiation protection act in the field of radiation in medical field

    Mechanical Characterization of Armchair and Zigzag Single-walled Carbon Nanotube

    Get PDF
    The stress-strain and Young’s modulus values of single-walled carbon nanotubes SWCNTs are modeled through linear finite element simulations and Matlab codes, in this study. Cylindrical zigzag and armchair single-walled are established as carbon nanostructures. An individual carbon nanotube (CNT) is simulated as a frame-like structure and the primary bonds between two nearest-neighboring carbon atoms are treated as 3D beam elements. The stiffness and the stress-strain curved of the SWCNTs are investigated. The effect domination of the nanotube diameter of the CNTs on Young’s modulus is studied. The simulation results acquired in this study are in good agreement with the experimental results

    Artificial microRNA-mediated resistance against Oman strain of tomato yellow leaf curl virus

    Get PDF
    Tomato yellow leaf curl virus (TYLCV) is a global spreading begomovirus that is exerting a major restraint on global tomato production. In this transgenic approach, an RNA interference (RNAi)-based construct consisting of sequences of an artificial microRNA (amiRNA), a group of small RNA molecules necessary for plant cell development, signal transduction, and stimulus to biotic and abiotic disease was engineered targeting the AC1/Rep gene of the Oman strain of TYLCV-OM. The Rep-amiRNA constructs presented an effective approach in regulating the expression of the Rep gene against TYLCV as a silencing target to create transgenic Solanum lycopersicum L. plant tolerance against TYLCV infection. Molecular diagnosis by PCR followed by a Southern hybridization analysis were performed to confirm the effectiveness of agrobacterium-mediated transformation in T0/T1-transformed plants. A substantial decrease in virus replication was observed when T1 transgenic tomato plants were challenged with the TYLCV-OM infectious construct. Although natural resistance options against TYLCV infection are not accessible, the current study proposes that genetically transformed tomato plants expressing amiRNA could be a potential approach for engineering tolerance in plants against TYLCV infection and conceivably for the inhibition of viral diseases against different strains of whitefly-transmitted begomoviruses in Oman

    Regulatory T Cell Extracellular Vesicles Modify T-Effector Cell Cytokine Production and Protect Against Human Skin Allograft Damage

    Get PDF
    Regulatory T cells (Tregs) are a subpopulation of CD4âș T cells with a fundamental role in maintaining immune homeostasis and inhibiting unwanted immune responses using several different mechanisms. Recently, the intercellular transfer of molecules between Tregs and their target cells has been shown via trogocytosis and the release of small extracellular vesicles (sEVs). In this study, CD4âșCD25âșCD127ËĄá”’ human Tregs were found to produce sEVs capable of inhibiting the proliferation of effector T cells (Teffs) in a dose dependent manner. These vesicles also modified the cytokine profile of Teffs leading to an increase in the production of IL-4 and IL-10 whilst simultaneously decreasing the levels of IL-6, IL-2, and IFNÎł. MicroRNAs found enriched in the Treg EVs were indirectly linked to the changes in the cytokine profile observed. In a humanized mouse skin transplant model, human Treg derived EVs inhibited alloimmune-mediated skin tissue damage by limiting immune cell infiltration. Taken together, Treg sEVs may represent an exciting cell-free therapy to promote transplant survival
    • 

    corecore