1,357 research outputs found
Chiral two-loop pion-pion scattering parameters from crossing-symmetric constraints
Constraints on the parameters in the one- and two-loop pion-pion scattering
amplitudes of standard chiral perturbation theory are obtained from explicitly
crossing-symmetric sum rules. These constraints are based on a matching of the
chiral amplitudes and the physical amplitudes at the symmetry point of the
Mandelstam plane. The integrals over absorptive parts appearing in the sum
rules are decomposed into crossing-symmetric low- and high-energy components
and the chiral parameters are finally related to high-energy absorptive parts.
A first application uses a simple model of these absorptive parts. The
sensitivity of the results to the choice of the energy separating high and low
energies is examined with care. Weak dependence on this energy is obtained as
long as it stays below ~560 MeV. Reliable predictions are obtained for three
two-loop parameters.Comment: 23 pages, 4 figures in .eps files, Latex (RevTex), our version of
RevTex runs under Latex2.09, submitted to Phys. Rev. D,minor typographical
corrections including the number at the end of the abstract, two sentences
added at the end of Section 5 in answer to a referee's remar
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency
A new case of 3-hydroxyacyl-CoA dehydrogenase deficiency is described with a relatively benign course
Perceived thickness and creaminess modulates the short-term satiating effects of high protein drinks
Previous research suggests that increasing beverage protein content enhances subsequent satiety, but whether this effect is entirely attributable to post-ingestive effects of protein or is partly caused by the distinct sensory characteristics imparted by the presence of protein remains unclear. To try and discriminate nutritive from sensory effects of added protein, we contrasted effects of three higher energy (c. 1.2MJ) and one lower energy (LE: 0.35MJ) drink preloads on subsequent appetite and lunch intake. Two higher energy drinks had 44% of energy from protein, one with the sensory characteristics of a juice drink (HP-) and the second thicker and more creamy (HP+). The high-carbohydrate preload (HC+) was matched for thickness and creaminess to the HP+ drink. Participants (healthy male volunteers, n=26) consumed significantly less at lunch after the HP+ (566g) and HC+ (572g) than after HP- (623g) and LE (668g) drinks, although the compensation for drink energy accounted for only 50% of extra energy at best. Appetite ratings indicated that participants felt significantly less hungry and more full immediately before lunch in HP+ and HC+ compared to LE, with HP- intermediate. The finding that protein generated stronger satiety in the context of a thicker creamier drink (HP+ but not HP-), and that an isoenergetic carbohydrate drink (HC+) matched in thickness and creaminess to the HP+ drink generated the same pattern of satiety as HP+ both suggest an important role for these sensory cues in the development of protein-based satiety
Magnetic Confinement, MHD Waves, and Smooth Line Profiles in AGN
In this paper, we show that if the broad line region clouds are in
approximate energy equipartition between the magnetic field and gravity, as
hypothesized by Rees, there will be a significant effect on the shape and
smoothness of broad emission line profiles in active galactic nuclei. Line
widths of contributing clouds or flow elements are much wider than their
thermal widths, due to the presence of non-dissipative MHD waves, and their
collective contribution produce emission line profiles broader and smoother
than would be expected if a magnetic field were not present. As an
illustration, a simple model of isotropically emitting clouds, normally
distributed in velocity, is used to show that smoothness can be achieved for
less than 80,000 clouds and may even be as low as a few hundred. We conclude
that magnetic confinement has far reaching consequences for observing and
modeling active galactic nuclei.Comment: to appear in MNRA
Determination of SU(2) Chiral Perturbation Theory low energy constants from a precise description of pion-pion scattering threshold parameters
We determine the values of the one- and two-loop low energy constants
appearing in the SU(2) Chiral Perturbation Theory calculation of pion-pion
scattering. For this we use a recent and precise sum rule determination of some
scattering lengths and slopes that appear in the effective range expansion. In
addition we provide sum rules for these coefficients up to third order in the
expansion. Our results when using only the scattering lengths and slopes of the
S, P, D and F waves are consistent with previous determinations, but seem to
require higher order contributions if they are to accommodate the third order
coefficients of the effective range expansion.Comment: 16 pages. Version published in Phys. Rev. D. Enlarged discussions in
several sections, appendices and many references added. Results and
conclusions unchange
The pro-active resource management departments of constituent entities of the tourism cluster
The proposed approach to the pro-active resource management departments of constituent entities of the tourism cluster, in particular of housekeeping service of the hotel. The developed methodology of the pro-active resource management of housekeeping service of the hotel was described
Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database
We present improved black hole masses for 35 active galactic nuclei (AGNs)
based on a complete and consistent reanalysis of broad emission-line
reverberation-mapping data. From objects with multiple line measurements, we
find that the highest precision measure of the virial product is obtained by
using the cross-correlation function centroid (as opposed to the
cross-correlation function peak) for the time delay and the line dispersion (as
opposed to full width half maximum) for the line width and by measuring the
line width in the variable part of the spectrum. Accurate line-width
measurement depends critically on avoiding contaminating features, in
particular the narrow components of the emission lines. We find that the
precision (or random component of the error) of reverberation-based black hole
mass measurements is typically around 30%, comparable to the precision attained
in measurement of black hole masses in quiescent galaxies by gas or stellar
dynamical methods. Based on results presented in a companion paper by Onken et
al., we provide a zero-point calibration for the reverberation-based black hole
mass scale by using the relationship between black hole mass and host-galaxy
bulge velocity dispersion. The scatter around this relationship implies that
the typical systematic uncertainties in reverberation-based black hole masses
are smaller than a factor of three. We present a preliminary version of a
mass-luminosity relationship that is much better defined than any previous
attempt. Scatter about the mass-luminosity relationship for these AGNs appears
to be real and could be correlated with either Eddington ratio or object
inclination.Comment: 61 pages, including 8 Tables and 16 Figures. Accepted for publication
in The Astrophysical Journa
The Low Energy Expansion for Pion-Pion Scattering and Crossing Symmetry in Dispersion Relations
We show that a suitable setting for comparison of the low-energy
representation for pion-pion scattering amplitudes, with dispersive
representation for these amplitudes, is provided by certain manifestly crossing
symmetric dispersion relations. We begin with a discussion of fixed-t
dispersion relations and discuss the origin of crossing constraints that arise
in this context when we consider resonance saturation with certain
states. We demonstrate that the approach advocated here does not require us to
enforce such constraints. Our results are contrasted with those from fixed-t
dispersion relations. We finally discuss the numerical import of our results.Comment: 24 pages plain LaTeX, to be run twic
Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene
<p>Abstract</p> <p>Objective</p> <p>To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA).</p> <p>Case report</p> <p>Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of blood peroxisomal markers strongly suggested a peroxisomal biogenesis disorder. Sequencing of candidate <it>PEX </it>genes revealed a homozygous c.865_866insA mutation in the <it>PEX2 </it>gene leading to a frameshift 17 codons upstream of the stop codon. <it>PEX </it>gene mutations usually result in a severe neurological phenotype (Zellweger spectrum disorders).</p> <p>Conclusions</p> <p>Genetic screening of PEX2 and other PEX genes involved in peroxisomal biogenesis is warranted in children and adults with ARCA.</p
- …