363 research outputs found

    Positional, Reorientational and Bond Orientational Order in DNA Mesophases

    Full text link
    We investigate the orientational order of transverse polarization vectors of long, stiff polymer molecules and their coupling to bond orientational and positional order in high density mesophases. Homogeneous ordering of transverse polarization vector promotes distortions in the hexatic phase, whereas inhomogeneous ordering precipitates crystalization of the 2D sections with different orientations of the transverse polarization vector on each molecule in the unit cell. We propose possible scenarios for going from the hexatic phase, through the distorted hexatic phase to the crystalline phase with an orthorhombic unit cell observed experimentally for the case of DNA.Comment: 4 pages, 2 figure

    Coupling between Smectic and Twist Modes in Polymer Intercalated Smectics

    Full text link
    We analyse the elastic energy of an intercalated smectic where orientationally ordered polymers with an average orientation varying from layer to layer are intercalated between smectic planes. The lowest order terms in the coupling between polymer director and smectic layer curvature are added to the smectic elastic energy. Integration over the smectic degrees of freedom leaves an effective polymer twist energy that has to be included into the total polymer elastic energy leading to a fluctuational renormalization of the intercalated polymer twist modulus. If the polymers are chiral this in its turn leads to a renormalization of the cholesteric pitch.Comment: 8 pages, 1 fig in ps available from [email protected] Replaced version also contains title and abstract in the main tex

    Boundary Effects in Chiral Polymer Hexatics

    Full text link
    Boundary effects in liquid-crystalline phases can be large due to long-ranged orientational correlations. We show that the chiral hexatic phase can be locked into an apparent three-dimensional N+6 phase via such effects. Simple numerical estimates suggest that the recently discovered "polymer hexatic" may actually be this locked phase.Comment: 4 pages, RevTex, 3 included eps figure

    Non-cross-linked biological mesh in complex abdominal wall hernia: a cohort study

    Get PDF
    Purpose: Complex abdominal wall hernia repair (CAWHR) is a challenging procedure. Mesh prosthesis is indicated, but the use of synthetic mesh in a contaminated area may add to overall morbidity. Biological meshes may provide a solution, but little is known about long-term results. The aim of our study was to evaluate clinical efficacy and patient satisfaction following Strattice™ (PADM) placement. Methods: In this cohort study, all patients operated for CAWHR with PADM in three large community hospitals in Germany were included. Patients underwent abdominal examination, an ultrasound was performed, and patients completed quality-of-life questionnaires. The study was registered in ClinicalTrials.gov under Identifier NCT02168231. Results: Twenty-seven patients were assessed (14 male, age 67.5 years, follow-up 42.4 months). The most frequent postoperative complication was wound infection (39.1%). In no case, the PADM had to be removed. Four patients had passed away. During outpatient clinic visit, six out of 23 patients (26.1%) had a recurrence of hernia, one patient had undergone reoperation. Five patients (21.7%) had bulging of the abdominal wall. Quality-of-life questionnaires revealed that patients judged their scar with a median 3.5 out of 10 points (0 = best) and judged their restrictions during daily activities with a median of 0 out of 10

    Interfaces of Modulated Phases

    Full text link
    Numerically minimizing a continuous free-energy functional which yields several modulated phases, we obtain the order-parameter profiles and interfacial free energies of symmetric and non-symmetric tilt boundaries within the lamellar phase, and of interfaces between coexisting lamellar, hexagonal, and disordered phases. Our findings agree well with chevron, omega, and T-junction tilt-boundary morphologies observed in diblock copolymers and magnetic garnet films.Comment: 4 page

    Phase Behavior of Columnar DNA Assemblies

    Get PDF
    The pair interaction between two stiff parallel linear DNA molecules depends not only on the distance between their axes but on their azimuthal orientation. The positional and orientational order in columnar B-DNA assemblies in solution is investigated, based on the DNA-DNA electrostatic pair potential that takes into account DNA helical symmetry and the amount and distribution of adsorbed counterions. A phase diagram obtained by lattice sum calculations predicts a variety of positionally and azimuthally ordered phases and bundling transitions strongly depending on the counterion adsorption patterns.Comment: 4 pages, 3 figures, submitted to PR

    Equation of state for polymer liquid crystals: theory and experiment

    Full text link
    The first part of this paper develops a theory for the free energy of lyotropic polymer nematic liquid crystals. We use a continuum model with macroscopic elastic moduli for a polymer nematic phase. By evaluating the partition function, considering only harmonic fluctuations, we derive an expression for the free energy of the system. We find that the configurational entropic part of the free energy enhances the effective repulsive interactions between the chains. This configurational contribution goes as the fourth root of the direct interactions. Enhancement originates from the coupling between bending fluctuations and the compressibility of the nematic array normal to the average director. In the second part of the paper we use osmotic stress to measure the equation of state for DNA liquid crystals in 0.1M to 1M NaCl solutions. These measurements cover 5 orders of magnitude in DNA osmotic pressure. At high osmotic pressures the equation of state, dominated by exponentially decaying hydration repulsion, is independent of the ionic strength. At lower pressures the equation of state is dominated by fluctuation enhanced electrostatic double layer repulsion. The measured equation of state for DNA fits well with our theory for all salt concentrations. We are able to extract the strength of the direct electrostatic double layer repulsion. This is a new and alternative way of measuring effective charge densities along semiflexible polyelectrolytes.Comment: text + 5 figures. Submitted to PR

    Homogeneous Bubble Nucleation driven by local hot spots: a Molecular Dynamics Study

    Full text link
    We report a Molecular Dynamics study of homogenous bubble nucleation in a Lennard-Jones fluid. The rate of bubble nucleation is estimated using forward-flux sampling (FFS). We find that cavitation starts with compact bubbles rather than with ramified structures as had been suggested by Shen and Debenedetti (J. Chem. Phys. 111:3581, 1999). Our estimate of the bubble-nucleation rate is higher than predicted on the basis of Classical Nucleation Theory (CNT). Our simulations show that local temperature fluctuations correlate strongly with subsequent bubble formation - this mechanism is not taken into account in CNT

    Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size

    Full text link
    We identify a class of composite membranes: fluid bilayers coupled to an elastic meshwork, that are such that the meshwork's energy is a function Fel[Aξ]F_\mathrm{el}[A_\xi] \textit{not} of the real microscopic membrane area AA, but of a \textit{smoothed} membrane's area AξA_\xi, which corresponds to the area of the membrane coarse-grained at the mesh size ξ\xi. We show that the meshwork modifies the membrane tension σ\sigma both below and above the scale ξ\xi, inducing a tension-jump Δσ=dFel/dAξ\Delta\sigma=dF_\mathrm{el}/dA_\xi. The predictions of our model account for the fluctuation spectrum of red blood cells membranes coupled to their cytoskeleton. Our results indicate that the cytoskeleton might be under extensional stress, which would provide a means to regulate available membrane area. We also predict an observable tension jump for membranes decorated with polymer "brushes"

    Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids

    Full text link
    We have carried out extensive equilibrium molecular dynamics (MD) simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures of Lennard-Jones (LJ) fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78<T<102o78 < T < 102 ^{\rm o}K, --in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stables in time. We find that below 90o90 ^{\rm o}K, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.Comment: 18 Latex-RevTex pages including 12 encapsulated postscript figures. Figures with better resolution available upon request. Accepted for publication in Phys. Rev. E Dec. 1st issu
    corecore