10,059 research outputs found

    Why Two Renormalization Groups are Better than One

    Get PDF
    The advantages of using more than one renormalization group (RG) in problems with more than one important length scale are discussed. It is shown that: i) using different RG's can lead to complementary information, i.e. what is very difficult to calculate with an RG based on one flow parameter may be much more accessible using another; ii) using more than one RG requires less physical input in order to describe via RG methods the theory as a function of its parameters; iii) using more than one RG allows one to solve problems with more than one diverging length scale. The above points are illustrated concretely in the context of both particle physics and statistical physics using the techniques of environmentally friendly renormalization. Specifically, finite temperature λϕ4\lambda\phi^4 theory, an Ising-type system in a film geometry, an Ising-type system in a transverse magnetic field, the QCD coupling constant at finite temperature and the crossover between bulk and surface critical behaviour in a semi-infinite geometry are considered.Comment: 17 pages LaTex; to be published in the Proceedings of RG '96, Dubn

    Gamble mode: Resonance contact mode in atomic force microscopy

    Get PDF
    Active noise reduction has been accomplished in atomic force microscopy by applying a high frequency, low amplitude vibration to the cantilever while it is in contact with a surface. The applied excitation (>~ 200 kHz; ~ 1 nm) is acoustically coupled to the tip and dampens the resonance Q factors of the system. The applied frequency is well above the bandwidth of the acquisition system (50 kHz). We call this mode "gamble mode" or "resonance contact.

    Two-Loop Crossover Scaling Functions of the O(N) Model

    Get PDF
    Using Environmentally Friendly Renormalization, we present an analytic calculation of the series for the renormalization constants that describe the equation of state for the O(N)O(N) model in the whole critical region. The solution of the beta-function equation, for the running coupling to order two loops, exhibits crossover between the strong coupling fixed point, associated with the Goldstone modes, and the Wilson-Fisher fixed point. The Wilson functions γλ\gamma_\lambda, γϕ\gamma_\phi and γϕ2\gamma_{\phi^2}, and thus the effective critical exponents associated with renormalization of the transverse vertex functions, also exhibit non-trivial crossover between these fixed points.Comment: 21 pages, 4 figures, version to appears in IJMPL

    Noise reduction in atomic force microscopy: Resonance contact mode

    Get PDF
    Noise reduction has been accomplished in atomic force microscopy by applying a high frequency, low amplitude vibration to the cantilever while it is in contact with a surface. The applied excitation (>~200 kHz; ~1 nm) is acoustically coupled to the tip and dampens the resonance Q factors of the system. The applied frequency is well above the bandwidth of the acquisition system (50 kHz). We call this mode "resonance contact" mode. The nonlinear behavior of the tip–sample interaction allows the high frequency excitation to effectively broaden the frequency response of the system resonances

    Pre-settlement coral-reef fish larvae respond to magnetic field changes during the day.

    Full text link
    Observations of coral-reef fish larvae have revealed remarkably consistent orientation behaviour while swimming offshore, requiring large-scale orientation cues. However, the mechanisms underlying this behaviour are still being investigated. One potential large-scale cue for orientation is the Earth's geomagnetic field. Here, we examined the effect of magnetic field manipulations on the orientation behaviour of coral-reef fish during the pelagic larval phase. In the absence of visual cues, individual larvae responded to a 90 deg shift of the horizontal component of the magnetic field within a Helmholtz coil with a comparable shift in orientation, demonstrating that they use a magnetic compass for orientation. Our findings suggest that geomagnetic field information guides swimming behaviour of larval fish in the pre-settlement phase. The ability to use large-scale sensory cues allows location-independent orientation of swimming, a behaviour that influences dispersal and connectivity of fish populations, which has important ecological implications for anthropogenic development of marine areas

    An Analytic Equation of State for Ising-like Models

    Get PDF
    Using an Environmentally Friendly Renormalization we derive, from an underlying field theory representation, a formal expression for the equation of state, y=f(x)y=f(x), that exhibits all desired asymptotic and analyticity properties in the three limits x0x\to 0, xx\to \infty and x1x\to -1. The only necessary inputs are the Wilson functions γλ\gamma_\lambda, γϕ\gamma_\phi and γϕ2\gamma_{\phi^2}, associated with a renormalization of the transverse vertex functions. These Wilson functions exhibit a crossover between the Wilson-Fisher fixed point and the fixed point that controls the coexistence curve. Restricting to the case N=1, we derive a one-loop equation of state for 2<d<42< d<4 naturally parameterized by a ratio of non-linear scaling fields. For d=3d=3 we show that a non-parameterized analytic form can be deduced. Various asymptotic amplitudes are calculated directly from the equation of state in all three asymptotic limits of interest and comparison made with known results. By positing a scaling form for the equation of state inspired by the one-loop result, but adjusted to fit the known values of the critical exponents, we obtain better agreement with known asymptotic amplitudes.Comment: 10 pages, 2 figure
    corecore