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Using Environmentally Friendly Renormalization, we present an analytic calculation of

the series for the renormalization constants that describe the equation of state for the

0(N) model in the whole critical region. The solution of the beta-function equation, for

the running coupling to order two loops, exhibits crossover between the strong coupling

fixed point, associated with the Goldstone modes, and the Wilson-Fisher fixed point.

The Wilson functions ‘y, -y and 72, and thus the effective critical exponents associated

with renormalization of the transverse vertex functions, also exhibit non-trivial crossover

between these fixed points.
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1. Introduction

The equation of state for the 0(N) model remains a subject of great interest (see,

for instance, Refs. 1, 2 for recent reviews). It exhibits crossover behavior between

three distinct asymptotic regimes —the critical region approached along the criti

cal isotherm, the critical region approached along the critical isochore, and, finally,

the coexistence curve. For N = 1, the longitudinal correlation length remains finite

away from the critical point on the coexistence curve, while for N > 1, the existence

of Goldstone bosons leads to infrared singularities.3’4The problem of encapsulating

these distinct scaling behaviors within one overall scaling function has been solved

through an ab initio derivation from an underlying microscopic model.5 Specifically,

in that work we obtained the equation of state for the 0(N) model using only the
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Landau—Ginzburg—Wilson (LOW) Hamiltonian by implementing an Environmen

tally Friendly Renormalization (EFR) Group6 which tracks the crossover between

the fixed points that control the different asymptotic regimes.

EFR is a formalism within a general framework of perturbative renormalization

and the renormalization group, specifically designed to describe crossover phenom

ena, where the effective degrees of freedom at different scales can be quite distinct,

leading to different scaling regimes and associated exponents. To do this, a suc

cessful renormalization should track the evolving nature of the effective degrees of

freedom as a function of scale and that as the latter depend on the “environment”

the reparametrization chosen should also depend of it. To illustrate this, if one con

sidered an interacting field theory in a three dimensional box of size L, one could

renormalize the theory in an L independent fashion. When one considered physics

on scales k L’ one would find that the theory was perturbatively ill defined,

whereas an appropriate L dependent renormalization made perturbative sense. The

reason for this, of course, is that the effective degrees of freedom in the system are

explicitly L dependent. An L independent renormalization ignores this important

physical fact. The only fluctuations being absorbed into the renormalized param

eters in this case are L independent, no matter what renormalization scale one

chooses. L here is the parameter which induces the crossover and therefore a good

renormalization scheme should be L dependent. In principle, basically any system

will exhibit crossover behavior in some regime. Some pertinent examples are: sys

tems with a bicritical point7,bulk-surface crossovers8and dimensional crossover9.

The advantage of this method relative to standard RG techniques is that it

describes perturbatively the crossovers between any and all fixed points as opposed

to the perturbative regime around one single fixed point. The disadvantage is that

the Feynman diagrams that enter in the perturbative calculations are computed in

the relevant environment where the finite part not just the asymptotic divergence

is crucial. Applying EFR to study the crossovers inherent in the equation of state

we obtain explicit functional forms that obey all required analyticity properties and

require no phenomenological input, only the three Wilson functions ‘YA, 7, and ‘y

which are deduced from within the theory. In particular, the case N = 1 was treated

analytically in the one-loop approximation in Ref. 5. In a recent study1°we carried

out the task again in the one-loop approximation, but now to include all N 1.

In this paper we continue the extension towards the two-loop approximation

of the universal equation of state by deriving the Wilson scaling functions to this

order. The main motivation for doing this is to contribute with the crossover func

tions required to obtain the equation of state, and to calculate the first non-trivial

correction to the critical effective exponent ij, which follows directly from the Wil

son function -y. Such a result is useful also as a checkout as no analytic form can

be accessed to this order even for N = 1. As a considerable part of the formidable

task of getting the equation of state for the 0(N) model to order two loops, we

consider it worthwhile to present the calculation in this publication. To begin with,
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in Section 2 we outline the renormalization group representation for the ab initio

formulation that will be considered throughout this paper. Then, in Section 3 we

obtain explicit expressions to the order of two ioops for the bare vertex functions,

the renormalization constants and the Wilson functions. In Section 4 we derive the

two-loop order Wilson functions and solve the beta-function equation of the run

ning coupling, whose curve exhibits the crossover between the Wilson-Fisher and

strong-coupling fixed points for N> 1. The corresponding crossovers in the Wilson

functions, and therefore in the effective critical exponents, are also presented in this

section. Finally, we draw concluding remarks in Section 5.

2. Renormalization Group Representation

The model is described by the standard LGW Hamiltonian with 0(N) symmetry

= fddx (vv+ r(x)+
AB(aa)2) (1)

which describes an N-component scalar field ço in a d-dimensional space. Here r

denotes the bare mass parameter, r = r + tB, with r being the value of r at

the critical temperature T and tB = A2 (2i), where A is the microscopic scale.

The value i- can naturally be interpreted in statistical mechanics as r CC T — Tm,

where Tm is the critical temperature predicted by mean field theory. As is well

known, an additive renormalization for r is first necessary to compensate for the

critical temperature shift; then a further multiplicative renormalization of tB is

needed.
The generator of connected correlation functions, W, is given by

W[Haj = lnZ, (2)

where Z is the functional integral over the order parameter fields , with Hamil

tonian (1) and an external source Ha(X)

Z[H] = f[d]e_1+1d. (3)

The connected correlation functions are obtained by repeated functional differenti

ation of W with respect to tB(X) and Ha(y). We denote these by

G’(x1,...,XN,yl,...,yM). (4)

In the same fashion, the vertex functions are obtained by functional differ

entiation with respect to (x) and t(x) of the effective action F[}, which is given

as the Legendre transform

= W{HaJ
+ f ddx Ha()(X), (5)

where a() is the physical magnetization of the system defined as

= Z’
6Ha() Ha0

(6)
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In the ordered phase two types of modes exist: those along the external field Ha

and those perpendicular to it. If we denote by a to the unit vector in the direction

of the external field, then by using the projectors

p2b = ab pab = óab — ab (7)

we can write a general vertex function as When all subscripts are equal to
(NM). (NM)

or t, we compact them to one. For instance, F
•

is denoted F . Addition

ally, if there are no 2 insertions (i.e. M = 0), the second superscript is omitted.

That is, we write p(’O) = p(N)

As a consequence of the Ward identities of this model, all vertex functions can

be expressed in terms of the transverse vertex functions. For instance, from the

equation of state = Ha we have = 0 and F = H, so that use of the Ward

identity r’ = F25 yields

= H, F = 0. (8)

Decomposing r’] produces f2), 2) and F. Ward identities then imply

(2) = (2) + ___2 and = 0. (9)

Analogously, one may express any vertex function in terms of the In this

sense, the transverse vertex functions are the building blocks of the theory. The

Wilson functions y,, to be defined shortly, can in particular be written in terms of

these functions.6

Due to the existence of large fluctuations in the critical regime, a renormalization

of the microscopic bare parameters of the form

t(m, i) = Z(l’)tB(m), (10)

= ZA(1B, (11)

=Z/2(j, (12)

must be imposed, where i is an arbitrary renormalization scale and mt is the inverse

transverse correlation length. The renormalized parameters satisfy the differential

equations

dt(ic) d
= 7,2(Kt(I), where 72(tc) = — /—lnZ,2 (13)

d)(i) d

dk
=y(t).\(t), where 7A(ti)=I—1nZA, (14)

d(k) 1 -
d

dk = —y(io(i), where 7(It) = i—lnZ , (15)

where on the right-hand side are the Wilson functions associated with this coor

dinate transformation and the derivatives are taken along an appropriately chosen
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curve in the phase diagram, which we here denote by c. In this paper we are inter

ested precisely in finding the as crossover scaling functions to the order of two

loops.
Integration of the RG equation for any multiplicatively renormalizable

yields

FT’’(t, A, ) = etM72)F’(t(i), A(i), (i)). (16)

The renormalization constants Z,, Z2 and Z>, are fixed by imposing the explic

itly magnetization-dependent normalization conditions on the transverse correlation

functions

82F(p, t(ic, ), A(s), = 1, (17)

F2”(o, t(k, k), A(k), i) = 1, (18)

4) (0, t(k, k), A(i), ) = A, (19)

while the condition

= 2)(0, t(K, ,), X(k), (i), t) (20)

serves as a gauge fixing condition that relates the sliding renormalization scale t to

the physical temperature t and magnetization . Physically, ic is a fiducial value of

the nonlinear scaling field mt.
Besides mt, the other nonlinear scaling field we use to parametrize our results is

1 (4) —2

m =
(2)

(21)

p- t 2Q

which is RG invariant. It represents the anisotropy in the masses of the longitudinal

and transverse modes and is related to the stiffness constant Ps
= 22p(2)

via m = Ape. With this renormalization prescription one may determine the

Wilson scaling functions in terms of the nonlinear scaling fields mt and m, as the

transverse and longitudinal propagators that appear in all perturbative diagrams

can be parametrized in terms of them.

3. Perturbative Series

3.1. The bare correlation functions

Within the ab initio formulation we are using, there appears the difficulty of calcu

lating Feynman diagrams that are no longer simple numbers but functions of the

variables mt and m instead. In the one-loop approximation it is possible to eval

uate the integrals involved analytically; however to higher orders this is no longer

possible and this, numerically, complicates derivation of the equation of state.
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In this section we present a perturbative expansion of the correlation functions

and show explicitly their dependence on the nonlinear scaling functions. We start

from the two-loop effective action

F []
= f ddx [(x) ( + r) (x) +

+fddx[3G(x,x)+2(N_ 1)G(x,x)Gt(x,x)

+ (N2 —1) G (x,x)] fddx ddy (x) [3G(x,y)

+(N— 1)G(x,y)G(x,y)fr(y), (22)

which embodies the physics of the system. Notice that we are implicitly working

with bare quantities and to simplify the writing we will be using diagrammatic

notation. We represent the longitudinal propagator by a solid line and the transverse

propagator by a dotted line: G’ =p2+r+O2and G1 =p2+r+2respectively.

It can be observed that in the symmetric ordered phase (magnetization = 0) the

two propagators are equivalent. Moreover, for models in the Ising universality class

(N = 1) the terms mixing propagators have no contribution in the correlation

function.
To obtain the two point correlation function, we take two functional derivatives

of F[j respect to the order parameter . After a large but otherwise direct calcu

lation, we find the two-loop approximation for the two point correlation function in
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momenta space

F (p) = [6QQ+ (N-i)

+2 (N — 1) Q + (N — 1) <C’

- +4(N -1)

—

:2 + (N2 — i)

— [6Ga — 18A (e + e) — 92

+9A22(+ + 922(e

+eo)i]

- (rz. +

+ A22 (‘: +

+22(Z+1o)3

2 2- 2f’. N
S0 —_--zj — +

+ (z.. + 2.o) )], (23)

where p denotes the external momenta flowing through the diagrams, the index 0

indicating evaluation of the corresponding diagram at the point p2 = 0. By using

the projectors (7) onto this expression one may identify both the transverse i2)

and the longitudinal 2) (p) two point correlation functions. The transverse two
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point vertex function is given by

_ Q +
(N -1) 0C;.: + 2 (N _1)0

+ (N2 1) -
-

92]

(24)

where we have added the terms arising from the one-loop contribution. The deriva

tive of this function respect to the external momenta p is also required. For this we

find

8p2Ft (0) = 1 — [6 — 9A2]

(25)

To obtain this result we have taken the derivative and then evaluated at the point

p2 = 0. We emphasize this fact with a diagonal line crossing the diagrams.

The four point correlation function can be calculated by taking four derivatives

in Eq. (22) or alternatively by using the Ward identity (9). By using the latter we

get to

(4) (0) =
- ( + N-i +

[1200

+(N2i) :2

+[-()]
+(N_1)[4

9/2. 1... .-. 2’\
—2A .. + + _.. +

-

(26)

To complete this stage of the calculation we need the correlation function 2’),

which can be obtained if one derivative of the function F(p) respect to the param
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eter t is taken. The resulting expression is

1 - N1:;+A2[6(2OO

+Q2)+4(N_1)(Q+.::2:aO)

1)

+ (N2 -1) (2 •. . : +
2:2)]

(27)

3.2. Wave function renormalization

We now move on to consider the wave function renormalization. To proceed, we

shall use the relationships that define both scaling variables m and rn in the one-

loop approximation, and then perform an inversion of these at the same order. The

next step is to replace the resulting expressions into the one-loop terms within the

correlation functions and then make the expansion up to two loops. By perform

ing these expansions into the first two terms of Eq. (26) we get to the four point

correlation function

4) (0) = — ( +
N—ic>) + [6Q2

+ (N-i) [::: +

-2BB

+(N-1)
- Q] >

(28)
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By repeating the same procedure into the one-loop terms of2’), one obtains

f(2(O)iB(Q+1/2)+[6Q2

(Ni) + (N - i) <2]

+ [2o-2B(o+e)] +(Ni[2Z

+___ - A
(+ - ( +

___

+2Z)] +(Ni) [::. Q]
(29)

Using these expressions we shall calculate the renormalization constants that are

necessary to find the Wilson functions to the order of two loops.

3.3. Renormalization constants

In this section we calculate the renormalization constants or Z functions. These are

defined in terms of the bare correlation functions that we found in the previous

section. For the function ZA we can write

zAi(Q+)+[6Q2

(N-i) 40+ (N - i) 2:2] +

-ABB(+ e)] + (N-i) ! [‘::: +

i8
[60 +(N_i)[29

B(+)]+(Ni)[.] <::

[ + N-i <D] Q, (30)

whereas for Z1 the expression is

z;1=i[6O9B0] _(N_i)[2zs.

(31)
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and similarly for Z’ one finds

z21=_(0+1

+ [2e2AB (ee)]

BP73 (H1:+2::)]

36
[6_9AB] +(N_1)[29::

Q] >

[ + N-
1<:>] 0 (32)

Notice that we have been working with the bare coupling )‘B, which we now write

explicitly in these expressions.

3.4. The Wilson functions

The Wilson functions are defined in terms of the renormalization constants ZA, Z

and Z2 that we found in the previous section. From the definition of ‘YA, by using



0 CD 0 CD

C
D

S

S

H
+

+
+

0

I

_

H

CD
:‘

I

-I
CD

C
o

I

_
_
_

:
!

_
_

0
II

S

_
_

_
_

_

C
o

4
j

_

C
()

_

+

_
_

(\
)

ii



October 4, 2010 0:17 WSPC/INSTRUCTION FILE two-loop-r

13

and finally from Eq. (32) we obtain for the Wilson function 72,

A / N—i= Dk KD +

A2 [DQ2 + (N — 1) fl>DkQ

+ [DkoA2D(o+e)]

+ ± - 9A2D]

- [y_. - Aö2Dk(+

+A32D[ +
N—i

:>] o
(35)

Notice that we have applied the D,ç to the renormalization constants and then
replaced AB in terms of the renormalized coupling A. Also note that in these ex
pressions all the diagrams are given in terms of the nonlinear scaling fields mt and

m, explicitly.

4. 3D Two-loop Results

As anticipated in Section 1, we are interested in obtaining expressions for the as

crossover scaling functions. The natural variable is z, and so the next stage consists
in writing the Wilson functions in terms of the nonlinear scaling fields z = rnt/m.

For instance, the Wilson function which is cubic in the coupling (see Eq. (33))
turns out a quadratic in terms of z. It is no difficult to express the Feynman diagrams
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Further, definition of the functions

gl(z) = Dk( +
N—i

g2(z)=

+(N_i)QD2(N_1)D2:i2],

3d F(i/2)2 1 (
-2 N

—
i(

-3/2

= (4)3 i+)
+ 18

2(N — 1) / -1/2
N — 1

+ i+—) +
9

g3(z) = [Dke —2Dk( +

3d 1 4r ( 1 12 ( 1 (ir i.4N
=

- (4)3 + 9) -

+ ) +

g4(z)=

i2D(.
+

g5(z)= [Dk(C_’) ._fDkIZ] (38)

allows one to write -y in the form

1 i—/ 1 N—i 1

18
g4+36f5

N—i N—i N—2
+

36
f6+ . (39)

Note that all the crossover scaling Wilson functions are finite in the limits of small

and large values of z. For the functions f (z) and g (z) for which it is not possible

to obtain an exact analytical expression, we have verified using Mathematica that

their behavior is finite in both asymptotic limits.
From the definition of ‘YA and its relation to the j3 function, we get the 3-function

equation for the dimensionless coupling \:

c— =—(4—d)A+A\. (40)

As discussed in Ref. 6, one attempts to reconstruct the Wilson functions from their

series to a given order in the loop expansion using some method of resummation.
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This is necessary as the direct perturbative series arising from the EFR scheme are

divergent asymptotic series for any coupling strength, so that physical results can

only be accessed from resummation procedures. Padé resummation is one technique,
based on rational functions having the same power series expansion as the original
series to the given order, that has been successfully used and is widely accepted for
resumming perturbative series since the early works of Baker,11 and so we use it
here to obtain a resummed series for the beta function; i.e. right-hand side of Eq.

(40). A noteworthy fact is that using different Padé approximants one may estimate
errors in the resummed series. This is especially useful for higher loop computations.

There also exist more sophisticated techniques that can be used for resummation
of asymptotic series, such as the Padé-Borel and conformal mapping methods. The
former applies the Padé approximation to the Borel transform, whereas the latter
is an improvement to the Padé-Borel method based on the mapping of a complex
plane into the unit disk. More efficient techniques are based on re-expansions of the
asymptotic truncated series in terms of special basis functions which are chosen to
possess precisely the analytic behavior responsible for the divergence of the original
series. These, and the method of variational perturbation theory, which is a system
atic extension of a variational approximation to path integrals, require information
on the behavior of the series, so they are suitable for higher order expansions (see
Ref. 12 for a review of these methods).

For our two-loop calculations, we use for simplicity the Padé approximant. That
is, we solve numerically the [2/1] Padé-resummed differential equation arising from

Eq. (40). The solutions we find are shown in Fig. 1. There, one may see the coupling

Fig. 1. The Padé-resummed coupling X(z), for several values of N. Note the crossover to
the strong fixed point for z —* 0.

parameter interpolating continually between the fixed points of the model. The

presence of the Wilson-Fisher fixed point
)4

can be observed for large numerical

values of z and, for N > 1, the fixed point associated with the coexistence curve
in the limit z — 0. Notice the relative decrease of the maximum, on the left of the

N= 1

N= 2

in z
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curve, as N increases. More precise values in the asymptotic regimes, obtained from

higher order approximations that introduce external numerical data, are known in

the literature. This leads one to expect the same qualitative behavior of the curve

to higher orders in the loop approximation. For completeness, in Table 1 we present

the asymptotic values for the coupling in the limit z —÷ 0 and in Table 2 the values

corresponding to the Wilson-Fisher fixed point. However, as these values come from

Table 1. Asymptotic values
of the 3D coupling and Wilson
functions in the limit z —* 0.

N X 7cp 72

1 oo 0 0 0
2 154.4 1 0 1
3 76.6 1 0 1
4 50.6 1 0 1

Table 2. Asymptotic values of the 3D coupling, Wilson func
tions and critical exponents at the WF critical point.

N .X - t j3 ii 7

1 29.01 1 0.033 0.43 0.33 4.8 0.64 1.26
2 25.26 1 0.033 0.52 0.35 4.8 0.68 1.33
3 22.23 1 0.032 0.59 0.37 4.8 0.71 1.39
4 19.76 1 0.031 0.64 0.38 4.8 0.73 1.45

a two-loop calculation, no greater precision is expected. What is worthwhile noticing

is the fact that, within our ab iriitio calculation and without external input data,

we capture the crossover-function character of the running coupling interpolating

from one fixed point to the other. By substituting the numerical solution for the
coupling into the Padé-resummed -y, (z) function, we obtain the behavior of the

Wilson functions showing the continuum crossover between the Wilson-Fisher fixed

point and the fixed point associated with the coexistence curve.
The crossover scaling function -y, (z) in Fig. 2 provides information on the effec

tive dimension of the system6.Given that the dimension employed to evaluate the
expressions is d = 3, asymptotically the value is 1, as expected. Nevertheless, it is

of theoretical and experimental interest the local minimum values of this function

for N > 1. For N = 1, the limit y>, —+ 0 shows mean field behavior as the fluc

tuations are suppressed. On the other hand, the crossover scaling function -y (z)

directly corresponds to the effective exponent i, see Fig. 3. As one would expect,

in the Wilson-Fisher fixed point, this takes values that approximate those known

from higher order calculations. We stress once again that, in the two-loop order

approximation that we consider in this work, the contribution comes from the ab
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The Wilson function 7A(z) showing that -y —÷ 1 in the limits z —+ cc and z -4 0,Fig. 2.
except for N = 1.

initio calculation and no attempt has been made at improving numerical values us
ing external data. The numerical values that we obtain are, nevertheless, provided
in table 2. Once more, in the limit z —÷ 0 the fluctuations are suppressed and this
can be observed in the zero value of this anomalous exponent. Finally, the crossover

Fig. 3. The Wilson function yp(z).

scaling function ‘y in Fig. 4 also shows non-trivial crossover. In the asymptotic
limit z -4 cc, this function is related to the critical exponent v. It can be observed
that the curves p2 (z), for N > 1, tend to follow the trajectory described by the
Ising model in the limit z —+ 0, but in the end they separate from it. Again in this
case, just as a reference, the asymptotic values of this function and for completeness
the values of the critical exponents have also been included in both tables.

5. Conclusions

By using EFR it is possible, from an ab iriitio calculation, to derive a parametric

form for the equation of state of the 0(N) model that has all desired analiticity

0.8

0.6

0.4

0.2

in z
-10 10

10

-0.04

-0.06

-10

N= 2 -0.08
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Fig. 4. The Wilson function 72(z). Notice the mean
N = 1, in the limit z —* 0 whereas —* 1 for N> 1.

field behavior of the Ising model,

properties in the three distinct asymptotic regimes. To order one ioop it is even

possible to obtain an analytic expression for N = 1 in dimension three. We see that

the fundamental building blocks for calculations are the Wilson functions. However,

despite the fact that they play a privileged role they enter into expressions for physi

cal quantities in a non-trivial way, such as in integrals. In the case where the Wilson

functions must be computed numerically in the first place this involves numerical

subtleties that are not present in standard calculations, such as perturbation ex

pansions in 6 or 1/N for problems where, for instance, the upper critical dimension

or the symmetry of the order parameter change, respectively. In reality this is to be

expected, calculating a crossover scaling function is much more complicated than

calculating an exponent.
From the EFR formalism it would seem that once the Wilson functions are cal

culated at a given order, the derivation of the equation of state at the same order

should be somehow straightforward. However, the Feynman diagrams appearing

in the Wilson functions to order two loops are crossover functions themselves and

the difficulty precisely resides in systematically sum diagrams whose divergences do

cancel. This is a problem we are currently sorting out. In this paper we have per

formed explicit two-loop order calculations of the transverse correlation functions,

the renormalization constants and the Wilson functions. By solving numerically the

beta-function equation, we have captured the crossover between the critical fixed

point and the fixed point associated with the coexistence curve. The Wilson func

tions also show the crossover. In the limit z —* cc, the Wilson-Fisher fixed point is

approached and ‘yj —* with -y, = 1 for d = 3. In contrast, in the limit z — 0 the

strong-coupling fixed point is approached and —* ‘yr’. For N> 1 the Goldstone

bosons dominate and = = 1. For N = 1 however, this fixed point is mean

field like as fluctuations are suppressed and 7 —+ 0.

5 10-10 -5

in z
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Appendix A. Derivatives of Feynman Integrals

We summarize here expressions for some of the diagrams appearing in the numerical

functions f (z) and gj (z). In terms of the functions

f(x,y) =x(1 —x)(1 —y)+y,
—2

g(x,y,z)=f(x,y)+y(1—x)z

re can write
2— d/2

= Ad I [‘dx dYx (y(1 — x)) f(x,y)
5—d

Jo o g(x,y,z)

D .Z = Ad f f dx dy
(x (1 — x))2’2(1

— ) yl_d/2f(x, y)

5—d

0

0 g(x,y,z)

2(4—d)P(4—d) 1where Ad = —

_______________

(4)d 2(4-d) Analogously, we have

9 d/21 1 3—d/2

=Bd

I I dxdy11
(x(1—x)) f(x,y)

6—d

Jo

Jo g(x,y,z)

D = Bd / [dx dy
(1 — x))22x3’2 (1

—
y) f(x, y)

6—d
Jo Jo g(x,y,z)

3—d/2 l_d/2f(x, y)Bd rlfldxdy(Y(1_x)) x
6—d

= 2Jo 0 g(x,y,z)

2(5—d)T(5—d) 1where Bd = — (4)d 2(5-d) Finally for the diagrams with the diagonal line

crossing them, we find

2—d/21 1 2d/2(ly)(x(lxj) f(x,y)
= —Ad / I 5—d

Jo Jo g(x,y,z)
3—d/2 1

=

—BdIlf’ dx dYx (y(l — x)) (— y)f(x,y)
6—d

o o g(x,y,z)

3—d/2 2—d

=—Bd 1 I dxdy1
y /2(1_y)2f(x,y)

6—d. Jo Jo g(x,y,z)
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