10,447 research outputs found

    Comparison of musculoskeletal networks of the primate forelimb

    Get PDF
    Anatomical network analysis is a framework for quantitatively characterizing the topological organization of anatomical structures, thus providing a way to compare structural integration and modularity among species. Here we apply this approach to study the macroevolution of the forelimb in primates, a structure whose proportions and functions vary widely within this group. We analyzed musculoskeletal network models in 22 genera, including members of all major extant primate groups and three outgroup taxa, after an extensive literature survey and dissections. The modules of the proximal limb are largely similar among taxa, but those of the distal limb show substantial variation. Some network parameters are similar within phylogenetic groups (e.g., non-primates, strepsirrhines, New World monkeys, and hominoids). Reorganization of the modules in the hominoid hand compared to other primates may relate to functional changes such as coordination of individual digit movements, increased pronation/supination, and knuckle-walking. Surprisingly, humans are one of the few taxa we studied in which the thumb musculoskeletal structures do not form an independent anatomical module. This difference may be caused by the loss in humans of some intrinsic muscles associated with the digits or the acquisition of additional muscles that integrate the thumb more closely with surrounding structures

    Electron Scattering in AlGaN/GaN Structures

    Full text link
    We present data on mobility lifetime, τt\tau_t, quantum lifetime, τq\tau_q, and cyclotron resonance lifetime, τCR\tau_{CR}, of a sequence of high-mobility two-dimensional electron gases in the AlGaN/GaN system, covering a density range of 14.5×1012\sim1-4.5\times10^{12}cm2^{-2}. We observe a large discrepancy between τq\tau_q and τCR\tau_{CR} (τqτCR\tau_q\sim\tau_{CR}/6) and explain it as the result of density fluctuations of only a few percent. Therefore, only τCR\tau_{CR} --and not τq\tau_q -- is a reliable measure of the time between electron scattering events in these specimens. The ratio τt/τCR\tau_t / \tau_{CR} increases with increasing density in this series of samples, but scattering over this density range remains predominantly in the large-angle scattering regime

    Differential freezeout and pion interferometry at RHIC from covariant transport theory

    Full text link
    Puzzling discrepancies between recent pion interferometry data on Au+Au reactions at s^1/2 = 130 and 200 AGeV from RHIC and predictions based on ideal hydrodynamics are analyzed in terms of covariant parton transport theory. The discrepancies of out and longitudinal radii are significantly reduced when the finite opacity of the gluon plasma is taken into account.Comment: 4 pages, 3 EPS figures. Submitted to PR

    Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

    Get PDF
    We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade switching superconducting single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching current, SNAPs showed sub 35 ps FWHM Gaussian jitter similar to standard 100 nm wide superconducting nanowire single-photon detectors. At lower values of IB, the instrument response function (IRF) of the detectors became wider, more asymmetric, and shifted to longer time delays. We could reproduce the experimentally observed IRF time-shift in simulations based on an electrothermal model, and explain the effect with a simple physical picture

    Non-parabolicity of the conduction band of wurtzite GaN

    Full text link
    Using cyclotron resonance, we measure the effective mass, mm*, of electrons in AlGaN/GaN heterostructures with densities, n2D16×1012n_{2D}\sim 1-6\times10^{12}cm2^{-2}. From our extensive data, we extrapolate a band edge mass of (0.208±0.002)me(0.208\pm0.002) m_e. By comparing our mm* data with the results of a multi-band \textbf{k.p} calculation we infer that the effect of remote bands is essential in explaining the observed conduction band non-parabolicity (NP). Our calculation of polaron mass corrections -- including finite width and screening - suggests those to be negligible. It implies that the behavior of m(n2D)m*(n_{2D}) can be understood solely in terms of NP. Finally, using our NP and polaron corrections, we are able to reduce the large scatter in the published band edge mass values

    Particle correlations at RHIC from parton coalescence dynamics -- first results

    Full text link
    A new dynamical approach that combines covariant parton transport theory with hadronization channels via parton coalescence and fragmentation is applied to Au+Au at RHIC. Basic consequences of the simple coalescence formulas, such as elliptic flow scaling and enhanced proton/pion ratio, turn out to be rather sensitive to the spacetime aspects of coalescence dynamics.Comment: Contribution to Quark Matter 2004 (January 11-17, 2004, Oakland, CA). 4 pages, 2 EPS figs, IOP style fil

    Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor

    Full text link
    We report on the temperature dependence of the mobility, μ\mu, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4×1012\times10^{12} cm2^{-2} to 3.0×1012\times10^{12} cm2^{-2} and a peak mobility of 80,000 cm2^{2}/Vs. Between 20 K and 50 K we observe a linear dependence μac1=α\mu_{ac}^{-1} = \alphaT indicating that acoustic phonon scattering dominates the temperature dependence of the mobility, with α\alpha being a monotonically increasing function of decreasing 2D electron density. This behavior is contrary to predictions of scattering in a degenerate electron gas, but consistent with calculations which account for thermal broadening and the temperature dependence of the electron screening. Our data imply a deformation potential D = 12-15 eV.Comment: 3 pages, 2 figures, RevTeX. Submitted to Appl Phys Let

    Rethinking the QCD collisional energy loss

    Get PDF
    It is shown that to leading order the collisional energy loss of an energetic parton in the hot quark gluon plasma reads dE/dxα(mD2)T2dE/dx \sim \alpha(m_D^2)T^2, where the scale of the coupling is determined by the (parametrically soft) Debye screening mass. Compared to previous expressions derived by Bjorken and other authors, dEB/dxα2T2ln(ET/mD2)dE^B/dx \sim \alpha^2 T^2 \ln(ET/m_D^2), the rectified result takes into account the running of the coupling, as dictated by quantum corrections beyond tree level. As one significant consequence, due to asymptotic freedom, the QCD collisional energy loss becomes independent of the jet energy in the limit ETE \gg T. It is advocated that this resummation improved perturbative result might be useful to (re-)estimate the collisional energy loss for temperatures relevant in heavy ion phenomenology.Comment: contribution to "Hot Quarks 2006", Villasimius, Italy, 15-20 May 200

    Free-form lens model and mass estimation of the high redshift galaxy cluster ACT-CL J0102-4915, "El Gordo"

    Full text link
    We examine the massive colliding cluster El Gordo, one of the most massive clusters at high redshift. We use a free-form lensing reconstruction method that avoids making assumptions about the mass distribution. We use data from the RELICS program and identify new multiply lensed system candidates. The new set of constraints and free-form method provides a new independent mass estimate of this intriguing colliding cluster. Our results are found to be consistent with earlier parametric models, indirectly confirming the assumptions made in earlier work. By fitting a double gNFW profile to the lens model, and extrapolating to the virial radius, we infer a total mass for the cluster of M200c=(1.080.12+0.65)×1015M_{200c}=(1.08^{+0.65}_{-0.12})\times10^{15}M_{\odot}. We estimate the uncertainty in the mass due to errors in the photometric redshifts, and discuss the uncertainty in the inferred virial mass due to the extrapolation from the lens model. We also find in our lens map a mass overdensity corresponding to the large cometary tail of hot gas, reinforcing its interpretation as a large tidal feature predicted by hydrodynamical simulations that mimic El Gordo. Finally, we discuss the observed relation between the plasma and the mass map, finding that the peak in the projected mass map may be associated with a large concentration of colder gas, exhibiting possible star formation. El Gordo is one of the first clusters that will be observed with JWST, which is expected to unveil new high redshift lensed galaxies around this interesting cluster, and provide a more accurate estimation of its mass.Comment: 19 pages, 10 figures. Updated figure
    corecore