22,065 research outputs found

    Measurement and analysis of critical crack tip processes during fatigue crack growth

    Get PDF
    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied

    Long-range interactions and the sign of natural amplitudes in two-electron systems

    Full text link
    In singlet two-electron systems the natural occupation numbers of the one-particle reduced density matrix are given as squares of the natural amplitudes which are defined as the expansion coefficients of the two-electron wave function in a natural orbital basis. In this work we relate the sign of the natural amplitudes to the nature of the two-body interaction. We show that long-range Coulomb-type interactions are responsible for the appearance of positive amplitudes and give both analytical and numerical examples that illustrate how the long-distance structure of the wave function affects these amplitudes. We further demonstrate that the amplitudes show an avoided crossing behavior as function of a parameter in the Hamiltonian and use this feature to show that these amplitudes never become zero, except for special interactions in which infinitely many of them can become zero simultaneously when changing the interaction strength. This mechanism of avoided crossings provides an alternative argument for the non-vanishing of the natural occupation numbers in Coulomb systems.Comment: 10 pages, 4 figure

    Unitary ambiguity in the extraction of the E2/M1 ratio for the γN↔Δ\gamma N\leftrightarrow\Delta transition

    Full text link
    The resonant electric quadrupole amplitude in the transition γN↔Δ(1232)\gamma N\leftrightarrow\Delta(1232) is of great interest for the understanding of baryon structure. Various dynamical models have been developed to extract it from the corresponding photoproduction multipole of pions on nucleons. It is shown that once such a model is specified, a whole class of unitarily equivalent models can be constructed, all of them providing exactly the same fit to the experimental data. However, they may predict quite different resonant amplitudes. Therefore, the extraction of the E2/M1(γN↔Δ\gamma N\leftrightarrow\Delta) ratio (bare or dressed) which is based on a dynamical model using a largely phenomenological πN\pi N interaction is not unique.Comment: 10 pages revtex including 4 postscript figure

    Closed-form expressions for correlated density matrices: application to dispersive interactions and example of (He)2

    Full text link
    Empirically correlated density matrices of N-electron systems are investigated. Exact closed-form expressions are derived for the one- and two-electron reduced density matrices from a general pairwise correlated wave function. Approximate expressions are proposed which reflect dispersive interactions between closed-shell centro-symmetric subsystems. Said expressions clearly illustrate the consequences of second-order correlation effects on the reduced density matrices. Application is made to a simple example: the (He)2 system. Reduced density matrices are explicitly calculated, correct to second order in correlation, and compared with approximations of independent electrons and independent electron pairs. The models proposed allow for variational calculations of interaction energies and equilibrium distance as well as a clear interpretation of dispersive effects on electron distributions. Both exchange and second order correlation effects are shown to play a critical role on the quality of the results.Comment: 22 page

    Microscopic heat from the energetics of stochastic phenomena

    Full text link
    The energetics of the stochastic process has shown the balance of energy on the mesoscopic level. The heat and the energy defined there are, however, generally different from their macroscopic counterpart. We show that this discrepancy can be removed by adding to these quantities the reversible heat associated with the mesoscopic free energy.Comment: 4 pages, 0 figur

    Echo spectroscopy of bulk Bogoliubov excitations in trapped Bose-Einstein condensates

    Full text link
    We propose and demonstrate an echo method to reduce the inhomogeneous linewidth of Bogoliubov excitations, in a harmonically-trapped Bose-Einstein condensate. Our proposal includes the transfer of excitations with momentum +q to -q using a double two photon Bragg process, in which a substantial reduction of the inhomogeneous broadening is calculated. Furthermore, we predict an enhancement in the method's efficiency for low momentum due to many-body effects. The echo can also be implemented by using a four photon process, as is demonstrated experimentally.Comment: 4 pages, 5 figure

    Testing Magnetic Field Models for the Class 0 Protostar L1527

    Full text link
    For the Class 0 protostar, L1527, we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, non-turbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, non-turbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a non-turbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.Comment: 43 pages, 9 figures, 4 tables. Accepted by the Astrophysical Journa

    Effects of intervention upon precompetition state anxiety in elite junior tennis players: The relevance of the matching hypothesis

    Get PDF
    Reproduced with permission of publisher from: Terry, P., Coakley, L., & Karageorghis, C. Effects of intervention upon precompetition state anxiety in elite junior tennis players: the relevance of the matching hypothesis. Perceptual and Motor Skills, 1995, 81, 287-296. © Perceptual and Motor Skills 1995The matching hypothesis proposes that interventions for anxiety should be matched to the modality in which anxiety is experienced. This study investigated the relevance of the matching hypothesis for anxiety interventions in tennis. Elite junior tennis players (N = 100; Age: M = 13.9 yr., SD = 1.8 yr.) completed the Competitive State Anxiety Inventory-2 before and after one of four randomly assigned intervention strategies approximately one hour prior to competition at a National Junior Championship. A two-factor multivariate analysis of variance (group x time) with repeated measures on the time factor gave no significant main effect by group but indicated significant reductions in somatic anxiety and cognitive anxiety and a significant increase in self-confidence following intervention. A significant group by time interaction emerged for self-confidence. The results question the need to match intervention strategy to the mode of anxiety experienced
    • …
    corecore