1,216 research outputs found

    Local Projections of Low-Momentum Potentials

    Full text link
    Nuclear interactions evolved via renormalization group methods to lower resolution become increasingly non-local (off-diagonal in coordinate space) as they are softened. This inhibits both the development of intuition about the interactions and their use with some methods for solving the quantum many-body problem. By applying "local projections", a softened interaction can be reduced to a local effective interaction plus a non-local residual interaction. At the two-body level, a local projection after similarity renormalization group (SRG) evolution manifests the elimination of short-range repulsive cores and the flow toward universal low-momentum interactions. The SRG residual interaction is found to be relatively weak at low energy, which motivates a perturbative treatment

    Superconducting and Normal State Properties of Neutron Irradiated MgB2

    Full text link
    We have performed a systematic study of the evolution of the superconducting and normal state properties of neutron irradiated MgB2_2 wire segments as a function of fluence and post exposure annealing temperature and time. All fluences used suppressed the transition temperature, Tc, below 5 K and expanded the unit cell. For each annealing temperature Tc recovers with annealing time and the upper critical field, Hc2(T=0), approximately scales with Tc. By judicious choice of fluence, annealing temperature and time, the Tc of damaged MgB2 can be tuned to virtually any value between 5 and 39 K. For higher annealing temperatures and longer annealing times the recovery of Tc tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters.Comment: Updated version, to appear in Phys. Rev.

    A Research-Based Curriculum for Teaching the Photoelectric Effect

    Get PDF
    Physics faculty consider the photoelectric effect important, but many erroneously believe it is easy for students to understand. We have developed curriculum on this topic including an interactive computer simulation, interactive lectures with peer instruction, and conceptual and mathematical homework problems. Our curriculum addresses established student difficulties and is designed to achieve two learning goals, for students to be able to (1) correctly predict the results of photoelectric effect experiments, and (2) describe how these results lead to the photon model of light. We designed two exam questions to test these learning goals. Our instruction leads to better student mastery of the first goal than either traditional instruction or previous reformed instruction, with approximately 85% of students correctly predicting the results of changes to the experimental conditions. On the question designed to test the second goal, most students are able to correctly state both the observations made in the photoelectric effect experiment and the inferences that can be made from these observations, but are less successful in drawing a clear logical connection between the observations and inferences. This is likely a symptom of a more general lack of the reasoning skills to logically draw inferences from observations.Comment: submitted to American Journal of Physic

    Confirmation of Parity Violation in the Gamma Decay of 180Hfm^{180}Hf^{m}

    Full text link
    This paper reports measurements using the technique of On Line Nuclear Orientation (OLNO) which reexamine the gamma decay of isomeric 180^{\rm 180}Hfm^{\rm m} and specifically the 501 keV 8−^{\rm -} -- 6+^{\rm +} transition. The irregular admixture of E2 to M2/E3 multipolarity in this transition, deduced from the forward-backward asymmetry of its angular distribution, has for decades stood as the prime evidence for parity mixing in nuclear states. The experiment, based on ion implantation of the newly developed mass-separated 180^{\rm 180}Hfm^{\rm m} beam at ISOLDE, CERN into an iron foil maintained at millikelvin temperatures, produces higher degrees of polarization than were achieved in previous studies of this system. The value found for the E2/M2 mixing ratio, ϵ\epsilon = -0.0324(16)(17), is in close agreement with the previous published average value ϵ\epsilon = - 0.030(2), in full confirmation of the presence of the irregular E2 admixture in the 501 keV transition. The temperature dependence of the forward-backward asymmetry has been measured over a more extended range of nuclear polarization than previously possible, giving further evidence for parity mixing of the 8−^{\rm -} and 8+^{\rm +} levels and the deduced E2/M2 mixing ratio.Comment: 28 pages, 9 figures, accepted for publication in Physical Review

    A Deeper Look at Student Learning of Quantum Mechanics: the Case of Tunneling

    Full text link
    We report on a large-scale study of student learning of quantum tunneling in 4 traditional and 4 transformed modern physics courses. In the transformed courses, which were designed to address student difficulties found in previous research, students still struggle with many of the same issues found in other courses. However, the reasons for these difficulties are more subtle, and many new issues are brought to the surface. By explicitly addressing how to build models of wave functions and energy and how to relate these models to real physical systems, we have opened up a floodgate of deep and difficult questions as students struggle to make sense of these models. We conclude that the difficulties found in previous research are the tip of the iceberg, and the real issue at the heart of student difficulties in learning quantum tunneling is the struggle to build the complex models that are implicit in experts' understanding but often not explicitly addressed in instruction.Comment: v2, v3 updated with more detailed analysis of data and discussion; submitted to Phys. Rev. ST: PE

    Centimeter-Wave Reflection in the Nitrates and Nitrites of Sodium and Potassium: Experiment and Theory

    Get PDF
    Temperature-dependent centimeter-wave reflection is studied in powdered samples of potassium nitrate (KNO3), potassium nitrite (KNO2), sodium nitrate (NaNO3), and sodium nitrite (NaNO2). Temperature-dependent reflection measurements at centimeter-wave frequencies were performed on an HP8510B Network analyzer based reflectometer. These measurements are compared to calculations utilizing a Debye relaxation model. Reflection losses seen in KNO2 and NaNO2 are expected to be due to the presence of permanent dipoles that are excited to ‘‘hopping’’ modes as the temperature is raised. Although NaNO3 shows little reflection losses, KNO3 shows significant losses as the temperature is raised toward the order/disorder transition temperature of 128 °C. This is believed to be due to the development of ‘‘induced’’ dipole moments as the lattice becomes increasingly disordered

    Identification of mixed-symmetry states in an odd-mass nearly-spherical nucleus

    Get PDF
    The low-spin structure of 93Nb has been studied using the (n,n' gamma) reaction at neutron energies ranging from 1.5 to 3.0 MeV and the 94Zr(p,2n gamma)93Nb reaction at bombarding energies from 11.5 to 19 MeV. States at 1779.7 and 1840.6 keV, respectively, are proposed as mixed-symmetry states associated with the coupling of a proton hole in the p_1/2 orbit to the 2+_1,ms state in 94Mo. These assignments are derived from the observed M1 and E2 transition strengths to the symmetric one-phonon states, energy systematics, spins and parities, and comparison with shell model calculations.Comment: 5 pages, 3 figure

    Necessary conditions for accurate computations of three-body partial decay widths

    Get PDF
    The partial width for decay of a resonance into three fragments is largely determined at distances where the energy is smaller than the effective potential producing the corresponding wave function. At short distances the many-body properties are accounted for by preformation or spectroscopic factors. We use the adiabatic expansion method combined with the WKB approximation to obtain the indispensable cluster model wave functions at intermediate and larger distances. We test the concept by deriving conditions for the minimal basis expressed in terms of partial waves and radial nodes. We compare results for different effective interactions and methods. Agreement is found with experimental values for a sufficiently large basis. We illustrate the ideas with realistic examples from α\alpha-emission of 12^{12}C and two-proton emission of 17^{17}Ne. Basis requirements for accurate momentum distributions are briefly discussed.Comment: To be published in Physical Review
    • …
    corecore