293 research outputs found

    Single Low-Dose Targeted Bevacizumab Infusion in Adult Patients with Steroid-Refractory Radiation Necrosis of the Brain: A Phase II Open-Label Prospective Clinical Trial

    Get PDF
    OBJECTIVE There is an unmet need for safe and rapidly effective therapies for refractory brain radiation necrosis (RN). The aim of this prospective single-arm phase II trial was to evaluate the safety and efficacy of a single low-dose targeted bevacizumab infusion after blood-brain barrier disruption (BBBD) in adult patients with steroid-refractory brain RN. METHODS Ten adults with steroid-refractory, imaging-confirmed brain RN were enrolled between November 2016 and January 2018 and followed for 12 months after treatment. Bevacizumab 2.5 mg/kg was administered as a one-time targeted intra-arterial infusion immediately after BBBD. Primary outcomes included safety and \u3e 25% decrease in lesion volume. Images were analyzed by a board-certified neuroradiologist blinded to pretrial diagnosis and treatment status. Secondary outcomes included changes in headache, steroid use, and functional status and absence of neurocognitive sequelae. Comparisons were analyzed using the Fisher exact test, Mann-Whitney U-test, linear mixed models, Wilcoxon signed-rank test, and repeated-measures 1-way ANOVA. RESULTS Ten adults (mean ± SD [range] age 35 ± 15 [22-62] years) participated in this study. No patients died or exhibited serious adverse effects of systemic bevacizumab. At 3 months, 80% (95% CI 44%-98%) and 90% (95% CI 56%-100%) of patients demonstrated \u3e 25% decrease in RN and vasogenic edema volume, respectively. At 12 months, RN volume decreased by 74% (median [range] 76% [53%-96%], p = 0.012), edema volume decreased by 50% (median [range] 70% [-11% to 83%], p = 0.086), and headache decreased by 84% (median [range] 92% [58%-100%], p = 0.022) among the 8 patients without RN recurrence. Only 1 (10%) patient was steroid dependent at the end of the trial. Scores on 12 of 16 (75%) neurocognitive indices increased, thereby supporting a pattern of cerebral white matter recovery. Two (20%) patients exhibited RN recurrence that required further treatment at 10 and 11 months, respectively, after bevacizumab infusion. CONCLUSIONS For the first time, to the authors\u27 knowledge, the authors demonstrated that a single low-dose targeted bevacizumab infusion resulted in durable clinical and imaging improvements in 80% of patients at 12 months after treatment without adverse events attributed to bevacizumab alone. These findings highlight that targeted bevacizumab may be an efficient one-time treatment for adults with brain RN. Further confirmation with a randomized controlled trial is needed to compare the intra-arterial approach with the conventional multicycle intravenous regimen

    Summary for policymakers

    Get PDF
    The Working Group III contribution to the IPCC Fifth Assessment Report (WGIII AR5) provides a comprehensive assessment of all relevant options for mitigating climate change through limiting or preventing greenhouse gas emissions, as well as activities that remove them from the atmosphere. It draws on scientific literature accepted for publication prior to 4 October 2013. The WGIII Summary for Policymakers was approved at the Twelfth Session of Working Group III, held in Berlin, Germany, from 7 to 11 April, 2014. During the session, the IPCC plenary also accepted the underlying scientific and technical assessment, which stands at 2000 pages, including more than 700 pages of references

    Technical summary

    Get PDF
    The Working Group III (WGIII) contribution to the IPCC's Fifth Assessment Report (AR5) assesses literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change. It builds upon the WGIII contribution to the IPCC's Fourth Assessment Report (AR4), the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) and previous reports and incorporates subsequent new findings and research. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. In light of the IPCC's mandate, authors in WGIII were guided by several principles when assembling this assessment: (1) to be explicit about mitigation options, (2) to be explicit about their costs and about their risks and opportunities vis-a-vis other development priorities, (3) and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies. This summary offers the main findings of the report

    An Outer Membrane Receptor of Neisseria meningitidis Involved in Zinc Acquisition with Vaccine Potential

    Get PDF
    Since the concentration of free iron in the human host is low, efficient iron-acquisition mechanisms constitute important virulence factors for pathogenic bacteria. In Gram-negative bacteria, TonB-dependent outer membrane receptors are implicated in iron acquisition. It is far less clear how other metals that are also scarce in the human host are transported across the bacterial outer membrane. With the aim of identifying novel vaccine candidates, we characterized in this study a hitherto unknown receptor in Neisseria meningitidis. We demonstrate that this receptor, designated ZnuD, is produced under zinc limitation and that it is involved in the uptake of zinc. Upon immunization of mice, it was capable of inducing bactericidal antibodies and we could detect ZnuD-specific antibodies in human convalescent patient sera. ZnuD is highly conserved among N. meningitidis isolates and homologues of the protein are found in many other Gram-negative pathogens, particularly in those residing in the respiratory tract. We conclude that ZnuD constitutes a promising candidate for the development of a vaccine against meningococcal disease for which no effective universal vaccine is available. Furthermore, the results suggest that receptor-mediated zinc uptake represents a novel virulence mechanism that is particularly important for bacterial survival in the respiratory tract

    Steroid receptor expression in the fish inner ear varies with sex, social status, and reproductive state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR) and aromatase in the main hearing organ of the inner ear (saccule) in the highly social African cichlid fish <it>Astatotilapia burtoni</it>, and tested whether these receptor levels were correlated with circulating steroid concentrations.</p> <p>Results</p> <p>We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes.</p> <p>Conclusions</p> <p>This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral auditory system of any single vertebrate. Our data suggest that changes in steroid receptor mRNA expression in the inner ear could be a regulatory mechanism for physiological state-dependent auditory plasticity across vertebrates.</p

    Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli

    Get PDF
    Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E. coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results suggest strategies for virulence-targeted therapies

    Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation

    Get PDF
    Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore