112 research outputs found

    Elliptic Yang-Mills flow theory

    No full text

    Reducing the positional modulation of NbO6-octahedra in SrxBa1-xNb2O6 by increasing the Barium content: A single crystal neutron diffraction study at ambient temperature for x=0.61 and x=0.34

    Full text link
    We report on the influence of the Barium content on the modulation amplitude in SrxBa1-xNb2O6 compounds by comparing Sr0.61Ba0.39Nb2O6 (SBN61) and Sr0.34Ba0.66Nb2O6 (SBN34). Our single crystal neutron diffraction results demonstrate that the amplitude of the positional modulation of the NbO6 octahedra is reduced with increasing barium content, indicating that the origin of the modulation is the partial occupation of the pentagonal channels by Sr and Ba atoms. By increasing the Sr content the bigger Ba atoms are replaced by the smaller Sr atoms, which leads to a larger deformation of the surrounding lattice and hence to a larger modulation amplitude. The more homogeneous the filling of these channels with one atomic type (Ba) the lower the modulation amplitude. Our results also show that the structure can be described with a two-dimensional incommensurate harmonic modulation. No second order modulation has been observed, both by single crystal diffraction measurements and q-scans. The positional modulation of the Nb atoms is much smaller than that of the oxygen atoms, such that the modulation can be seen as a rotational modulation of almost rigid NbO6-octahedra

    Quasi Regular Polyhedra and Their Duals with Coxeter Symmetries Represented by Quaternions I

    Full text link
    In two series of papers we construct quasi regular polyhedra and their duals which are similar to the Catalan solids. The group elements as well as the vertices of the polyhedra are represented in terms of quaternions. In the present paper we discuss the quasi regular polygons (isogonal and isotoxal polygons) using 2D Coxeter diagrams. In particular, we discuss the isogonal hexagons, octagons and decagons derived from 2D Coxeter diagrams and obtain aperiodic tilings of the plane with the isogonal polygons along with the regular polygons. We point out that one type of aperiodic tiling of the plane with regular and isogonal hexagons may represent a state of graphene where one carbon atom is bound to three neighboring carbons with two single bonds and one double bond. We also show how the plane can be tiled with two tiles; one of them is the isotoxal polygon, dual of the isogonal polygon. A general method is employed for the constructions of the quasi regular prisms and their duals in 3D dimensions with the use of 3D Coxeter diagrams.Comment: 22 pages, 16 figure

    Inter-site Coulomb interaction and Heisenberg exchange

    Full text link
    Based on exact diagonalization results for small clusters we discuss the effect of inter-site Coulomb repulsion in Mott-Hubbard or charge transfer insulators. Whereas the exchange constant J for direct exchange is substantially enhanced by inter-site Coulomb interaction, that for superexchange is suppressed. The enhancement of J in the single-band models holds up to the critical value for the charge density wave (CDW) instability, thus opening the way for large values of J. Single-band Hubbard models with sufficiently strong inter-site repulsion to be near a CDW instability thus may provide `physical' realizations of t-J like models with the `unphysical' parameter ratio J/t=1.Comment: Revtex file, 4 PRB pages, with 5 embedded ps-files. To appear in PRB, rapid communications. Hardcopies of figures or the entire manuscript may also be obtained by e-mail request to: [email protected]

    Fourier-Space Crystallography as Group Cohomology

    Full text link
    We reformulate Fourier-space crystallography in the language of cohomology of groups. Once the problem is understood as a classification of linear functions on the lattice, restricted by a particular group relation, and identified by gauge transformation, the cohomological description becomes natural. We review Fourier-space crystallography and group cohomology, quote the fact that cohomology is dual to homology, and exhibit several results, previously established for special cases or by intricate calculation, that fall immediately out of the formalism. In particular, we prove that {\it two phase functions are gauge equivalent if and only if they agree on all their gauge-invariant integral linear combinations} and show how to find all these linear combinations systematically.Comment: plain tex, 14 pages (replaced 5/8/01 to include archive preprint number for reference 22

    Theory of Superconducting TcT_{c} of doped fullerenes

    Get PDF
    We develop the nonadiabatic polaron theory of superconductivity of MxC60M_{x}C_{60} taking into account the polaron band narrowing and realistic electron-phonon and Coulomb interactions. We argue that the crossover from the BCS weak-coupling superconductivity to the strong-coupling polaronic and bipolaronic superconductivity occurs at the BCS coupling constant λ1\lambda\sim 1 independent of the adiabatic ratio, and there is nothing ``beyond'' Migdal's theorem except small polarons for any realistic electron-phonon interaction. By the use of the polaronic-type function and the ``exact'' diagonalization in the truncated Hilbert space of vibrons (``phonons'') we calculate the ground state energy and the electron spectral density of the C60C_{60}^{-} molecule. This allows us to describe the photoemission spectrum of C60C_{60}^{-} in a wide energy region and determine the electron-phonon interaction. The strongest coupling is found with the high-frequency pinch Ag2A_{g2} mode and with the Frenkel exciton. We clarify the crucial role of high-frequency bosonic excitations in doped fullerenes which reduce the bare bandwidth and the Coulomb repulsion allowing the intermediate and low-frequency phonons to couple two small polarons in a Cooper pair. The Eliashberg-type equations are solved for low-frequency phonons. The value of the superconducting TcT_{c}, its pressure dependence and the isotope effect are found to be in a remarkable agreement with the available experimental data.Comment: 20 pages, Latex, 4 figures available upon reques

    Relativistic nature of a magnetoelectric modulus of Cr_2O_3-crystals: a new 4-dimensional pseudoscalar and its measurement

    Full text link
    Earlier, the magnetoelectric effect of chromium sesquioxide Cr_2O_3 has been determined experimentally as a function of temperature. One measures the electric field-induced magnetization on Cr_2O_3 crystals or the magnetic field-induced polarization. From the magnetoelectric moduli of Cr_2O_3 we extract a 4-dimensional relativistic invariant pseudoscalar α~\widetilde{\alpha}. It is temperature dependent and of the order of 10^{-4}/Z_0, with Z_0 as vacuum impedance. We show that the new pseudoscalar is odd under parity transformation and odd under time inversion. Moreover, α~\widetilde{\alpha} is for Cr_2O_3 what Tellegen's gyrator is for two port theory, the axion field for axion electrodynamics, and the PEMC (perfect electromagnetic conductor) for electrical engineering.Comment: Revtex, 36 pages, 9 figures (submitted in low resolution, better quality figures are available from the authors

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
    corecore