7,962 research outputs found

    Modeling the Black Hole Excision Problem

    Full text link
    We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasi-linear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasi-linear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.Comment: 21 pages, 14 postscript figures, minor contents updat

    Instability and `Sausage-String' Appearance in Blood Vessels during High Blood Pressure

    Get PDF
    A new Rayleigh-type instability is proposed to explain the `sausage-string' pattern of alternating constrictions and dilatations formed in blood vessels under influence of a vasoconstricting agent. Our theory involves the nonlinear elasticity characteristics of the vessel wall, and provides predictions for the conditions under which the cylindrical form of a blood vessel becomes unstable.Comment: 4 pages, 4 figures submitted to Physical Review Letter

    New Abundances for Old Stars - Atomic Diffusion at Work in NGC 6397

    Full text link
    A homogeneous spectroscopic analysis of unevolved and evolved stars in the metal-poor globular cluster NGC 6397 with FLAMES-UVES reveals systematic trends of stellar surface abundances that are likely caused by atomic diffusion. This finding helps to understand, among other issues, why the lithium abundances of old halo stars are significantly lower than the abundance found to be produced shortly after the Big Bang.Comment: 8 pages, 7 colour figures, 1 table; can also be downloaded via http://www.eso.org/messenger

    Observation of Parity Nonconservation in Møller Scattering

    Get PDF
    We report a measurement of the parity-violating asymmetry in fixed target electron-electron (Møller) scattering: A_(PV) = [-175 ± 30(stat)± 20(syst)] X 10^(-9). This first direct observation of parity nonconservation in Møller scattering leads to a measurement of the electron’s weak charge at low energy Q^e_W = -0:053 ± 0:011. This is consistent with the standard model expectation at the current level of precision: sin^2θ_W = (M_Z)_(MS) = 0:2293 ± 0:0024(stat) ± 0:0016(syst) ± 0:0006(theory)

    The r-Process Enriched Low Metallicity Giant HD 115444

    Full text link
    New high resolution, very high signal-to-noise spectra of ultra-metal-poor (UMP) giant stars HD 115444 and HD 122563 have been gathered with the High-Resolution Echelle Spectrometer of the McDonald Observatory 2.7m Telescope. With these spectra, line identification and model atmosphere analyses have been conducted, emphasizing the neutron-capture elements. Twenty elements with Z > 30 have been identified in the spectrum of HD 115444. This star is known to have overabundances of the neutron-capture elements, but it has lacked a detailed analysis necessary to compare with nucleosynthesis predictions. The new study features a line-by-line differential abundance comparison of HD 115444 with the bright, well-studied halo giant HD 122563. For HD 115444, the overall metallicity is [Fe/H]~ -3.0. The abundances of the light and iron-peak elements generally show the same pattern as other UMP stars (e.g. overdeficiencies of manganese and chromium, overabundances of cobalt), but the differential analysis indicates several nucleosynthesis signatures that are unique to each star.Comment: To Appear in the Astrophysical Journa

    C and N Abundances in Stars At the Base of the Red Giant Branch in M5

    Get PDF
    We present an analysis of a large sample of moderate resolution Keck LRIS spectra of subgiant (V \sim 17.2) and fainter stars in the Galactic globular cluster M5 (NGC 5904) with the goal of deriving C and N abundances. Star-to-star stochastic variations with significant range in both [C/Fe] and [N/Fe] are found at all luminosities extending to the bottom of the RGB at M_V \sim +3. Similar variations in CH appear to be present in the main sequence turnoff spectra. There is no sign of a change in the behavior of C and N with evolutionary stage over the full range in luminosity of the RGB and SGB. The C and N abundances appear strongly anti-correlated, as would be expected from the CN-cycle processing of stellar material. Yet the present stars are considerably fainter than the RGB bump, the point at which deep mixing is believed to set in. On this basis, while the observed abundance pattern is consistent with proton capture nucleosynthesis, we infer that the site of the reactions is likely not within the present sample, but rather in a population of more massive (2 -- 5 M(Sun)) now defunct stars. The range of variation of the N abundances is very large and the sum of C+N increases as C decreases. To reproduce this requires the incorporation not only of CN but also of ON-processed material. Furthermore, the existence of this correlation is quite difficult to reproduce with an external mechanism such as ``pollution'' with material processed in a more massive AGB star, which mechanism is fundamentally stochastic in nature. We therefore suggest that although the internal mixing hypothesis has serious flaws,new theoretical insights are needed and it should not be ruled out yet. (abridged)Comment: Slightly updated version to conform to that accepted by the A

    Improving the Precision of Abstract Interpretation Based Cache Persistence Analysis

    Full text link
    When designing hard real-time embedded systems, it is required to estimate the worst-case execution time (WCET) of each task for schedulability analysis. Precise cache persistence analysis can significantly tighten the WCET estimation, especially when the program has many loops. Methods for persistence analysis should safely and precisely classify memory references as persistent. Ex-isting safe approaches suffer from multiple sources of pessimism and may not provide precise results. In this paper, we first identify some sources of pessimism that two recent approaches based on younger set and may analysis may encounter. Then, we propose two methods to eliminate these sources of pessimism. The first method improves the update function of the may analysis-based approach; and the second method integrates the younger set-based and may analysis-based approaches together to further reduce pes-simism. We also prove the two proposed methods are still safe. We evaluate the approaches on a set of benchmarks and observe the number of memory references classified as persistent is increased by the proposed methods. Moreover, we empirically compare the storage space and analysis time used by different methods
    • …
    corecore