3,840 research outputs found

    Clustering as an example of optimizing arbitrarily chosen objective functions

    Get PDF
    This paper is a reflection upon a common practice of solving various types of learning problems by optimizing arbitrarily chosen criteria in the hope that they are well correlated with the criterion actually used for assessment of the results. This issue has been investigated using clustering as an example, hence a unified view of clustering as an optimization problem is first proposed, stemming from the belief that typical design choices in clustering, like the number of clusters or similarity measure can be, and often are suboptimal, also from the point of view of clustering quality measures later used for algorithm comparison and ranking. In order to illustrate our point we propose a generalized clustering framework and provide a proof-of-concept using standard benchmark datasets and two popular clustering methods for comparison

    The Time Machine: A Simulation Approach for Stochastic Trees

    Full text link
    In the following paper we consider a simulation technique for stochastic trees. One of the most important areas in computational genetics is the calculation and subsequent maximization of the likelihood function associated to such models. This typically consists of using importance sampling (IS) and sequential Monte Carlo (SMC) techniques. The approach proceeds by simulating the tree, backward in time from observed data, to a most recent common ancestor (MRCA). However, in many cases, the computational time and variance of estimators are often too high to make standard approaches useful. In this paper we propose to stop the simulation, subsequently yielding biased estimates of the likelihood surface. The bias is investigated from a theoretical point of view. Results from simulation studies are also given to investigate the balance between loss of accuracy, saving in computing time and variance reduction.Comment: 22 Pages, 5 Figure

    Statistical significance of communities in networks

    Full text link
    Nodes in real-world networks are usually organized in local modules. These groups, called communities, are intuitively defined as sub-graphs with a larger density of internal connections than of external links. In this work, we introduce a new measure aimed at quantifying the statistical significance of single communities. Extreme and Order Statistics are used to predict the statistics associated with individual clusters in random graphs. These distributions allows us to define one community significance as the probability that a generic clustering algorithm finds such a group in a random graph. The method is successfully applied in the case of real-world networks for the evaluation of the significance of their communities.Comment: 9 pages, 8 figures, 2 tables. The software to calculate the C-score can be found at http://filrad.homelinux.org/cscor

    Biased tomography schemes: an objective approach

    Get PDF
    We report on an intrinsic relationship between the maximum-likelihood quantum-state estimation and the representation of the signal. A quantum analogy of the transfer function determines the space where the reconstruction should be done without the need for any ad hoc truncations of the Hilbert space. An illustration of this method is provided by a simple yet practically important tomography of an optical signal registered by realistic binary detectors.Comment: 4 pages, 3 figures, accepted in PR

    The Retail FX Trader: Random Trading and the Negative Sum Game

    Get PDF
    With the internet boom of early 2000 making access to trading the Foreign Exchange (FX) market far simpler for members of the general public, the growth of 'retail' FX trading continues, with daily transaction volumes as high as $200 billion. Potential new entrants to the retail FX trading world may come from the recent UK pension deregulations, further increasing the volumes. The attraction of FX trading is that it offers high returns and whilst it has been understood that it is high-risk in nature, the rewards are seen as being commensurately high for the 'skilled and knowledgeable' trader who has an edge over other market participants. This paper analyses a number of independent sources of data and previous research, to examine the profitability of the Retail FX trader and compares the results with that of a simulated random trading models. This paper finds evidence to suggest that whilst approximately 20% of traders can expect to end up with a profitable account, around 40% might expect their account to be subject to a margin call. This paper finds a strong correlation between the overall profitability of traders and impact of the cost of the bid-ask spread, whilst finding little if any evidence that retail FX traders, when viewed as a group, are achieving results better than that from random trading

    Replicators in Fine-grained Environment: Adaptation and Polymorphism

    Full text link
    Selection in a time-periodic environment is modeled via the two-player replicator dynamics. For sufficiently fast environmental changes, this is reduced to a multi-player replicator dynamics in a constant environment. The two-player terms correspond to the time-averaged payoffs, while the three and four-player terms arise from the adaptation of the morphs to their varying environment. Such multi-player (adaptive) terms can induce a stable polymorphism. The establishment of the polymorphism in partnership games [genetic selection] is accompanied by decreasing mean fitness of the population.Comment: 4 pages, 2 figure
    corecore