444 research outputs found

    Molecular films associated with LDEF

    Get PDF
    The molecular films deposited on the surface of the Long Duration Exposure Facility (LDEF) originated from the paints and room-temperature-vulcanized (RTV) silicone materials intentionally used on the satellite and not from residual contaminants. The high silicone content of most of the films and the uniformity of the films indicates a homogenization process in the molecular deposition and suggests a chemically most favored composition for the final film. The deposition on interior surfaces and vents indicated multiple bounce trajectories or repeated deposition-reemission cycles. Exterior surface deposits indicated a significant return flux. Ultraviolet light exposure was required to fix the deposited film as is indicated by the distribution of the films on interior surfaces and the thickness of films at the vent locations. Thermal conditions at the time of exposure to ultraviolet light seems to be an important factor in the thickness of the deposit. Sunrise facing (ram direction) surfaces always had the thicker film. These were the coldest surfaces at the time of their exposure to ultraviolet light. The films have a layered structure suggesting cyclic deposition. As many as 34 distinct layers were seen in the films. The cyclic nature of the deposition and the chemical uniformity of the film one layer to the next suggest an early deposition of the films though there is evidence for the deposition of molecular films throughout the nearly six year exposure of the satellite. A final 'spray' of an organic material associated with water soluble salts occurred very late in the mission. This may have been the result of one of the shuttle dump activities

    SCUBA polarisation observations of the magnetic fields in the prestellar cores L1498 and L1517B

    Full text link
    We have mapped linearly polarized dust emission from the prestellar cores L1498 and L1517B with the James Clerk Maxwell Telescope (JCMT) using the Submillimetre Common User Bolometer Array (SCUBA) and its polarimeter SCUBAPOL at a wavelength of 850um. We use these measurements to determine the plane-of-sky magnetic field orientation in the cores. In L1498 we see a magnetic field across the peak of the core that lies at an offset of 19 degrees to the short axis of the core. This is similar to the offsets seen in previous observations of prestellar cores. To the southeast of the peak, in the filamentary tail of the core, we see that the magnetic field has rotated to lie almost parallel to the long axis of the filament. We hypothesise that the field in the core may have decoupled from the field in the filament that connects the core to the rest of the cloud. We use the Chandrasekhar-Fermi (CF) method to measure the plane-of-sky field strength in the core of L1498 to be 10 +/- 7 uG. In L1517B we see a more gradual turn in the field direction from the northern part of the core to the south. This appears to follow a twist in the filament in which the core is buried, with the field staying at a roughly constant 25 degree offset to the short axis of the filament, also consistent with previous observations of prestellar cores. We again use the CF method and calculate the magnetic field strength in L1517B also to be 30 +/- 10 uG. Both cores appear to be roughly virialised. Comparison with our previous work on somewhat denser cores shows that, for the denser cores, thermal and non-thermal (including magnetic) support are approximately equal, while for the lower density cores studied here, thermal support dominates.Comment: 6 pages, 2 figures; accepted for publication by MNRA

    VLA OH and H I Zeeman Observations of the NGC 6334 Complex

    Get PDF
    We present OH and H I Zeeman observations of the NGC 6334 complex taken with the Very Large Array. The OH absorption profiles associated with the complex are relatively narrow (del-v_FWHM ~ 3 km s^1) and single-peaked over most of the sources. The H I absorption profiles contain several blended velocity components. One of the compact continuum sources in the complex (source A) has a bipolar morphology. The OH absorption profiles toward this source display a gradient in velocity from the northern continuum lobe to the southern continuum lobe; this velocity gradient likely indicates a bipolar outflow of molecular gas from the central regions to the northern and southern lobes. Magnetic fields of the order of 200 microG have been detected toward three discrete continuum sources in the complex. Virial estimates suggest that the detected magnetic fields in these sources are of the same order as the critical magnetic fields required to support the molecular clouds associated with the sources against gravitational collapse.Comment: 14 pages, 9 postscript figures, accepted for publication in the Astrophysical Journal (ApJ), tentatively scheduled for vol. 533, Apr. 20, 2000; also available at http://www.pa.uky.edu/~sarma/RESEARCH/aps_research.htm

    Quantification of contaminants associated with LDEF

    Get PDF
    The quantification of contaminants on the Long Duration Exposure Facility (LDEF) and associated hardware or tools is addressed. The purpose of this study was to provide a background data base for the evaluation of the surface of the LDEF and the effects of orbital exposure on that surface. This study necessarily discusses the change in the distribution of contaminants on the LDEF with time and environmental exposure. Much of this information may be of value for the improvement of contamination control procedures during ground based operations. The particulate data represents the results of NASA contractor monitoring as well as the results of samples collected and analyzed by the authors. The data from the tapelifts collected in the Space Shuttle Bay at Edwards Air Force Base and KSC are also presented. The amount of molecular film distributed over the surface of the LDEF is estimated based on measurements made at specific locations and extrapolated over the surface area of the LDEF. Some consideration of total amount of volatile-condensible materials available to form the resultant deposit is also presented. All assumptions underlying these estimates are presented along with the rationale for the conclusions. Each section is presented in a subsection for particles and another for molecular films

    Migration and generation of contaminants from launch through recovery: LDEF case history

    Get PDF
    It is possible to recreate the contamination history of the Long Duration Exposure Facility (LDEF) through an analysis of its contaminants and selective samples that were collected from surfaces with better documented exposure histories. This data was then used to compare estimates based on monitoring methods that were selected for the purpose of tracking LDEF's exposure to contaminants. The LDEF experienced much more contamination than would have been assumed based on the monitors. Work is still in progress but much of what was learned so far is already being used in the selection of materials and in the design of systems for space. Now experiments are being prepared for flight to resolve questions created by the discoveries on the LDEF. A summary of what was learned about LDEF contaminants over the first year since recovery and deintegration is presented. Over 35 specific conclusions in 5 contamination related categories are listed

    Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations

    Full text link
    We have carried out an extensive survey of magnetic field strengths toward dark cloud cores in order to test models of star formation: ambipolar-diffusion driven or turbulence driven. The survey involved 500\sim500 hours of observing with the Arecibo telescope in order to make sensitive OH Zeeman observations toward 34 dark cloud cores. Nine new probable detections were achieved at the 2.5-sigma level; the certainty of the detections varies from solid to marginal, so we discuss each probable detection separately. However, our analysis includes all the measurements and does not depend on whether each position has a detection or just a sensitive measurement. Rather, the analysis establishes mean (or median) values over the set of observed cores for relevant astrophysical quantities. The results are that the mass-to-flux ratio is supercritical by 2\sim 2, and that the ratio of turbulent to magnetic energies is also 2\sim 2. These results are compatible with both models of star formation. However, these OH Zeeman observations do establish for the first time on a statistically sound basis the energetic importance of magnetic fields in dark cloud cores at densities of order 103410^{3-4} cm3^{-3}, and they lay the foundation for further observations that could provide a more definitive test.Comment: 22 pages, 2 figures, 2 table

    Two Bipolar Outflows and Magnetic Fields in a Multiple Protostar System, L1448 IRS 3

    Get PDF
    We performed spectral line observations of CO J=2-1, 13CO J=1-0, and C18O J=1-0 and polarimetric observations in the 1.3 mm continuum and CO J=2-1 toward a multiple protostar system, L1448 IRS 3, in the Perseus molecular complex at a distance of ~250 pc, using the BIMA array. In the 1.3 mm continuum, two sources (IRS 3A and 3B) were clearly detected with estimated envelope masses of 0.21 and 1.15 solar masses, and one source (IRS 3C) was marginally detected with an upper mass limit of 0.03 solar masses. In CO J=2-1, we revealed two outflows originating from IRS 3A and 3B. The masses, mean number densities, momentums, and kinetic energies of outflow lobes were estimated. Based on those estimates and outflow features, we concluded that the two outflows are interacting and that the IRS 3A outflow is nearly perpendicular to the line of sight. In addition, we estimated the velocity, inclination, and opening of the IRS 3B outflow using Bayesian statistics. When the opening angle is ~20 arcdeg, we constrain the velocity to ~45 km/s and the inclination angle to ~57 arcdeg. Linear polarization was detected in both the 1.3 mm continuum and CO J=2-1. The linear polarization in the continuum shows a magnetic field at the central source (IRS 3B) perpendicular to the outflow direction, and the linear polarization in the CO J=2-1 was detected in the outflow regions, parallel or perpendicular to the outflow direction. Moreover, we comprehensively discuss whether the binary system of IRS 3A and 3B is gravitationally bound, based on the velocity differences detected in 13CO J=1-0 and C18O J=1-0 observations and on the outflow features. The specific angular momentum of the system was estimated as ~3e20 cm^2/s, comparable to the values obtained from previous studies on binaries and molecular clouds in Taurus.Comment: ApJ accepted, 20 pages, 2 tables, 10 figure

    High prevalence of penicillin-nonsusceptible Streptococcus pneumoniae at a community hospital in Oklahoma.

    Get PDF
    During 1997, Oklahoma City's Hospital A reported penicillin-nonsusceptible Streptococcus pneumoniae in almost 67% of isolates. To confirm this finding, all Hospital A S. pneumoniae isolates from October 23, 1997, through February 19, 1998, were tested for antibiotic susceptibility and repeat-tested at two other hospital laboratories. Medical records of Hospital A patients with invasive S. pneumoniae infections during 1994 through 1997 were also reviewed. These data were compared with 1998 statewide sentinel hospital surveillance data for invasive S. pneumoniae. Of 48 S. pneumoniae isolates from Hospital A during October 23, 1997, through February 19, 1998, 31 (65%) were penicillin-nonsusceptible S. pneumoniae, and 23 (48%) were highly penicillin resistant. Similar prevalences were confirmed at the other hospital laboratories; however, significant interlaboratory differences were noted in the determination of third-generation cephalosporin susceptibility. During 1994 through 1997, a trend toward increasing penicillin nonsusceptibility (p <0.05) was noted among S. pneumoniae isolates from nursing home patients. During 1998, 85 (30%) of 282 invasive isolates reported to the state surveillance system were penicillin-nonsusceptible S. pneumoniae; 33 (12%) were highly resistant. The increase in resistance observed is notable; the interlaboratory discrepancies are unexplained. To respond, a vaccination program was implemented at Hospital A, and vaccination efforts were initiated at nursing homes
    corecore