3,110 research outputs found

    Kurtosis in Large-Scale Structure as a Constraint on Non-Gaussian Initial Conditions

    Get PDF
    We calculate the kurtosis of a large-scale density field which has undergone weakly non-linear gravitational evolution from arbitrary non-Gaussian initial conditions. It is well known that the weakly evolved {\twelveit skewness} is equal to its initial value plus the term induced by gravity, which scales with the rms density fluctuation in precisely the same way as for Gaussian initial conditions. As in the case of skewness, the evolved {\twelveit kurtosis} is equal to its initial value plus the contribution induced by gravity. The scaling of this induced contribution, however, turns out to be qualitatively different for Gaussian versus non-Gaussian initial conditions. Therefore, measurements of the kurtosis can serve as a powerful discriminating test between the hypotheses of Gaussian and non-Gaussian nature of primordial density fluctuations.Comment: uuencoded compressed tar file including postscript text (17 pages) and 2 postscript figures, submitted to MNRA

    Simulations of the Microwave Sky and of its ``Observations''

    Full text link
    Here follows a preliminary report on the construction of fake millimeter and sub-millimeter skies, as observed by virtual instruments, e.g. the COBRA/SAMBA mission, using theoretical modeling and data extrapolations. Our goal is to create maps as realistic as possible of the relevant physical contributions which may contribute to the detected signals. This astrophysical modeling is followed by simulations of the measurement process itself by a given instrumental configuration. This will enable a precise determination of what can and cannot be achieved with a particular experimental configuration, and provide a feedback on how to improve the overall design. It is a key step on the way to define procedures for the separation of the different physical processes in the future observed maps. Note that this tool will also prove useful in preparing and analyzing current (\eg\ balloon borne) Microwave Background experiments. Keywords: Cosmology -- Microwave Background Anisotropies.Comment: 6 pages of uuencoded compressed postscript (1.2 Mb uncompressed), to appear in the proceedings of the meeting "Far Infrared and Sub-millimeter Space Missions in the Next Decade'', Paris, France, Eds. M. Sauvage, Space Science Revie

    The FIR/submm window on galaxy formation

    Get PDF
    Our view on the deep universe has been so far biased towards optically bright galaxies. Now, the measurement of the Cosmic Infrared Background in FIRAS and DIRBE residuals, and the observations of FIR/submm sources by the ISOPHOT and SCUBA instruments begin unveiling the ``optically dark side'' of galaxy formation. Though the origin of dust heating is still unsolved, it appears very likely that a large fraction of the FIR/submm emission is due to heavily-extinguished star formation. Consequently, the level of the CIRB implies that about 2/3 of galaxy/star formation in the universe is hidden by dust shrouds. In this review, we introduce a new modeling of galaxy formation and evolution that provides us with specific predictions in FIR/submm wavebands. These predictions are compared with the current status of the observations. Finally, the capabilities of current and forthcoming instruments for all-sky and deep surveys of FIR/submm sources are briefly described.Comment: 10 pages, Latex, 5 postscript figures, to appear in ``The Birth of Galaxies'', 1999, B. Guiderdoni, F.R. Bouchet, T.X. Thuan & J. Tran Thanh Van (eds), Editions Frontiere

    All sky CMB map from cosmic strings integrated Sachs-Wolfe effect

    Full text link
    By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this map corrects previous results derived in the flat sky approximation, while remaining completely compatible at the smallest scales.Comment: 8 pages, 4 figures, uses RevTeX. References added, matches published versio

    Probing CMB Non-Gaussianity Using Local Curvature

    Get PDF
    It is possible to classify pixels of a smoothed cosmic microwave background (CMB) fluctuation map according to their local curvature in ``hill'', ``lake'' and ``saddle'' regions. In the Gaussian case, fractional areas occupied by pixels of each kind can be computed analytically for families of excursion sets as functions of threshold and moments of the fluctuation power spectrum. We show how the shape of these functions can be used to constrain accurately the level of non-Gaussianity in the data by applying these new statistics to an hypothetical mixed model suggested by Bouchet et al. (2001). According to our simple test, with only one 12.5x12.5 deg^2 map, Planck should be able to detect with a high significance a non-Gaussian level as weak as 10% in temperature standard deviation (rms) (5% in C_l), whereas a marginal detection would be possible for MAP with a non-Gaussian level around 30% in temperature (15% in C_l).Comment: 11 pages, 13 figures, submitted to MNRA

    CMB Polarization Data and Galactic Foregrounds: Estimation of Cosmological Parameters

    Get PDF
    We estimate the accuracy with which various cosmological parameters can be determined from the CMB temperature and polarization data when various galactic unpolarized and polarized foregrounds are included and marginalized using the multi-frequency Wiener filtering technique. We use the specifications of the future CMB missions MAP and PLANCK for our study. Our results are in qualitative agreement with earlier results obtained without foregrounds, though the errors in most parameters are higher because of degradation of the extraction of polarization signal in the presence of foregrounds.Comment: 6 pages, submitted to MNRA

    The Power Spectrum, Bias Evolution, and the Spatial Three-Point Correlation Function

    Full text link
    We calculate perturbatively the normalized spatial skewness, S3S_3, and full three-point correlation function (3PCF), ζ\zeta, induced by gravitational instability of Gaussian primordial fluctuations for a biased tracer-mass distribution in flat and open cold-dark-matter (CDM) models. We take into account the dependence on the shape and evolution of the CDM power spectrum, and allow the bias to be nonlinear and/or evolving in time, using an extension of Fry's (1996) bias-evolution model. We derive a scale-dependent, leading-order correction to the standard perturbative expression for S3S_3 in the case of nonlinear biasing, as defined for the unsmoothed galaxy and dark-matter fields, and find that this correction becomes large when probing positive effective power-spectrum indices. This term implies that the inferred nonlinear-bias parameter, as usually defined in terms of the smoothed density fields, might depend on the chosen smoothing scale. In general, we find that the dependence of S3S_3 on the biasing scheme can substantially outweigh that on the adopted cosmology. We demonstrate that the normalized 3PCF, QQ, is an ill-behaved quantity, and instead investigate QVQ_V, the variance-normalized 3PCF. The configuration dependence of QVQ_V shows similarly strong sensitivities to the bias scheme as S3S_3, but also exhibits significant dependence on the form of the CDM power spectrum. Though the degeneracy of S3S_3 with respect to the cosmological parameters and constant linear- and nonlinear-bias parameters can be broken by the full configuration dependence of QVQ_V, neither statistic can distinguish well between evolving and non-evolving bias scenarios. We show that this can be resolved, in principle, by considering the redshift dependence of ζ\zeta.Comment: 41 pages, including 12 Figures. To appear in The Astrophysical Journal, Vol. 521, #

    The effect of point sources on satellite observations of the cosmic microwave background

    Full text link
    We study the effect of extragalactic point sources on satellite observations of the cosmic microwave background (CMB). In order to separate the contributions due to different foreground components, a maximum-entropy method is applied to simulated observations by the Planck Surveyor satellite. In addition to point sources, the simulations include emission from the CMB and the kinetic and thermal Sunyaev-Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust, free-free and synchrotron emission. We find that the main input components are faithfully recovered and, in particular, that the quality of the CMB reconstruction is only slightly reduced by the presence of point sources. In addition, we find that it is possible to recover accurate point source catalogues at each of the Planck Surveyor observing frequencies.Comment: 12 pages, 9 figures, submitted to MNRA

    SPI Measurements of the Diffuse Galactic Hard X-ray Continuum

    Full text link
    INTEGRAL Spectrometer SPI data from the first year of the Galactic Centre Deep Exposure has been analysed for the diffuse continuum from the Galactic ridge. A new catalogue of sources from the INTEGRAL Imager IBIS has been used to account for their contribution to the celestial signal. Apparently diffuse emission is detected at a level ~10% of the total source flux. A comparison of the spectrum of diffuse emission with that from an analysis of IBIS data alone shows that they are consistent. The question of the contribution of unresolved sources to this ridge emission is still open.Comment: Proceedings of the 5th INTEGRAL Workshop, Munich 16-20 February 2004. ESA SP-552. Reference to Terrier et al. (2004) updated to include astro-ph versio

    Search for Outbursts in the Narrow 511-keV Line from Compact Sources Based on INTEGRAL Data

    Full text link
    We present the results of a systematic search for outbursts in the narrow positron annihilation line on various time scales (5x10^4 - 10^6 s) based on the SPI/INTEGRAL data obtained from 2003 to 2008. We show that no outbursts were detected with a statistical significance higher than ~6 sigma for any of the time scales considered over the entire period of observations. We also show that, given the large number of independent trials, all of the observed spikes could be associated with purely statistical flux fluctuations and, in part, with a small systematic prediction error of the telescope's instrumental background. Based on the exposure achieved in ~6 yr of INTEGRAL operation, we provide conservative upper limits on the rate of outbursts with a given duration and flux in different parts of the sky.Comment: 16 pages, 8 figures. To be published in Astronomy Letters, 2010, Vol. 36, No 4, p. 23
    corecore