20,306 research outputs found

    Two-loop Improved Truncation of the Ghost-Gluon Dyson-Schwinger Equations: Multiplicatively Renormalizable Propagators and Nonperturbative Running Coupling

    Full text link
    The coupled Dyson-Schwinger equations for the gluon and ghost propagators are investigated in the Landau gauge using a two-loop improved truncation that preserves the multiplicative renormalizability of the propagators. In this truncation all diagrams contribute to the leading order infrared analysis. The infrared contributions of the nonperturbative two-loop diagrams to the gluon vacuum polarization are computed analytically, and this reveals that infrared power behaved propagator solutions only exist when the squint diagram contribution is taken into account. For small momenta the gluon and ghost dressing functions behave respectively like (p^2)^{2\kappa} and (p^2)^{-\kappa}, and the running coupling exhibits a fixed point. The values of the infrared exponent and fixed point depend on the precise details of the truncation. The coupled ghost-gluon system is solved numerically for all momenta, and the solutions have infrared behaviors consistent with the predictions of the infrared analysis. For truncation parameters chosen such that \kappa=0.5, the two-loop improved truncation is able to produce solutions for the propagators and running coupling which are in very good agreement with recent lattice simulations.Comment: 41 pages, LateX; minor corrections; accepted for publication in Few-Body System

    Comment on "Nucleon form factors and a nonpointlike diquark"

    Get PDF
    Authors of Phys. Rev. C 60, 062201 (1999) presented a calculation of the electromagnetic form factors of the nucleon using a diquark ansatz in the relativistic three-quark Faddeev equations. In this Comment it is pointed out that the calculations of these form factors stem from a three-quark bound state current that contains overcounted contributions. The corrected expression for the three-quark bound state current is derived.Comment: 6 pages, 1 figure, revtex, eps

    Strongly Secure Communications Over the Two-Way Wiretap Channel

    Full text link
    We consider the problem of secure communications over the two-way wiretap channel under a strong secrecy criterion. We improve existing results by developing an achievable region based on strategies that exploit both the interference at the eavesdropper's terminal and cooperation between legitimate users. We leverage the notion of channel resolvability for the multiple-access channel to analyze cooperative jamming and we show that the artificial noise created by cooperative jamming induces a source of common randomness that can be used for secret-key agreement. We illustrate the gain provided by this coding technique in the case of the Gaussian two-way wiretap channel, and we show significant improvements for some channel configurations.Comment: 11 pages, 7 figures, submitted to IEEE Transactions on Information Forensics and Security, Special Issue: "Using the Physical Layer for Securing the Next Generation of Communication Systems

    Method and apparatus for fabricating improved solar cell modules

    Get PDF
    A method and apparatus for fabricating an improved solar cell module is described. The apparatus includes a supply drum for feeding a flexible strip having etched electrical circuitry deposited on it a supply drum for feeding into overlying engagement with the flexible strip a flexible tape having a pair of exposed tacky surfaces, and a plurality of rams for receiving and depositing a plurality of solar cells in side-by-side relation on an exposed tacky surface of the tape in electrical contacting engagement with the etched circuitry

    Detection of Spiral photons in Quantum Optics

    Full text link
    We show that a new type of photon detector, sensitive to the gradients of electromagnetic fields, should be a useful tool to characterize the quantum properties of spatially-dependent optical fields. As a simple detector of such a kind, we propose using magnetic dipole or electric quadrupole transitions in atoms or molecules and apply it to the detection of spiral photons in Laguerre-Gauss (LG) beams. We show that LG beams are not true hollow beams, due to the presence of magnetic fields and gradients of electric fields on beam axis. This approach paves the way to an analysis at the quantum level of the spatial structure and angular momentum properties of singular light beams.Comment: 5 pages, 4 figure

    Experimental status of the ππ\pi\pi isoscalar S wave at low energy: f0(600)f_0(600) pole and scattering length

    Get PDF
    The experimental results obtained in the last few years on kaon decays (K→2π\to2\pi and, above all, Ke4 decays) allow a reliable, model independent determination of low energy ππ\pi\pi scattering in the S0 wave. Using them and, eventually, other sets of data, it is possible to give a precise parametrization of the S0 wave as well as to find the scattering length and effective range parameter. One can also perform an extrapolation to the pole of the "σ\sigma resonance" [f0(600)f_0(600)]. We obtain the results a0(0)=0.233±0.013Mπ−1,b0(0)=0.285±0.012Mπ−3a_0^{(0)}=0.233\pm0.013 M^{-1}_\pi,\quad b_0^{(0)}=0.285\pm0.012 M^{-3}_\pi and, for the σ\sigma pole, M_\sigma=484\pm17 \mev,\quad\gammav_\sigma/2= 255\pm10 {\rm MeV}.Comment: Plain TeX;4 figures; improved data used; version to appear in Phys. Rev.

    Resonant control of spin dynamics in ultracold quantum gases by microwave dressing

    Full text link
    We study experimentally interaction-driven spin oscillations in optical lattices in the presence of an off-resonant microwave field. We show that the energy shift induced by this microwave field can be used to control the spin oscillations by tuning the system either into resonance to achieve near-unity contrast or far away from resonance to suppress the oscillations. Finally, we propose a scheme based on this technique to create a flat sample with either singly- or doubly-occupied sites, starting from an inhomogeneous Mott insulator, where singly- and doubly-occupied sites coexist.Comment: 4 pages, 5 figure
    • …
    corecore