120 research outputs found
Neutrino-Nucleus Reactions and Muon Capture in 12C
The neutrino-nucleus cross section and the muon capture rate are discussed
within a simple formalism which facilitates the nuclear structure calculations.
The corresponding formulae only depend on four types of nuclear matrix
elements, which are currently used in the nuclear beta decay. We have also
considered the non-locality effects arising from the velocity-dependent terms
in the hadronic current. We show that for both observables in 12C the higher
order relativistic corrections are of the order of ~5 only, and therefore do
not play a significant role. As nuclear model framework we use the projected
QRPA (PQRPA) and show that the number projection plays a crucial role in
removing the degeneracy between the proton-neutron two quasiparticle states at
the level of the mean field. Comparison is done with both the experimental data
and the previous shell model calculations. Possible consequences of the present
study on the determination of the neutrino oscillation
probability are briefly addressed.Comment: 29 pages, 6 figures, Revtex4. Several changes were made to the
previous manuscript, the results and final conclusions remain unalterable. It
has been accepted for publication as a Regular Article in Physical Review
Nuclear Magnetic Resonance and Hyperfine Structure
Contains reports on five research projects
Isoscalar g Factors of Even-Even and Odd-Odd Nuclei
We consider T=0 states in even-even and odd-odd N=Z nuclei. The g factors
that emerge are isoscalar. We find that the single j shell model gives simple
expressions for these g factors which for even-even nuclei are suprisingly
close to the collective values for K=0 bands. The g factors of many 2+ in
even-even nuclei and 1+ and 3+ states in odd-odd nuclei have g factors close to
0.5
Isospin-mixing corrections for fp-shell Fermi transitions
Isospin-mixing corrections for superallowed Fermi transitions in {\it
fp}-shell nuclei are computed within the framework of the shell model. The
study includes three nuclei that are part of the set of nine accurately
measured transitions as well as five cases that are expected to be measured in
the future at radioactive-beam facilities. We also include some new
calculations for C. With the isospin-mixing corrections applied to the
nine accurately measured values, the conserved-vector-current hypothesis
and the unitarity condition of the Cabbibo-Kobayashi-Maskawa (CKM) matrix are
tested.Comment: 13 pages plus five tables. revtex macro
Time Reversal Invariance Violating and Parity Conserving effects in Neutron Deuteron Scattering
Time reversal invariance violating parity conserving effects for low energy
elastic neutron deuteron scattering are calculated for meson exchange and
EFT-type of potentials in a Distorted Wave Born Approximation, using realistic
hadronic wave functions, obtained by solving three-body Faddeev equations in
configuration space.Comment: There was a technical mistake in calculations due to singular
behavior of Yukawa functions at short range. We corrected the integration
algorithm. There were some typos which are corrected. arXiv admin note: text
overlap with arXiv:1104.305
Large-basis shell-model calculation of 10C->10B Fermi matrix element
We use a shell-model calculation with a two-body effective
interaction derived microscopically from the Reid93 potential to calculate the
isospin-mixing correction for the 10C->10B superallowed Fermi transition. The
effective interaction takes into account the Coulomb potential as well as the
charge dependence of T=1 partial waves. Our results suggest the isospin- mixing
correction , which is compatible with previous
calculations. The correction obtained in those calculations, performed in a
space, was dominated by deviation from unity of the radial
overlap between the converted proton and the corresponding neutron. In the
present calculation this effect is accommodated by the large model space. The
obtained correction is about a factor of four too small to obtain
unitarity of the Cabibbo-Kobayashi-Maskawa matrix with the present experimental
data.Comment: 14 pages. REVTEX. 3 PostScript figure
Magnetic moments of Mg in time-odd relativistic mean field approach
The configuration-fixed deformation constrained relativistic mean field
approach with time-odd component has been applied to investigate the
ground-state properties of Mg with effective interaction PK1. The ground
state of Mg has been found to be prolate deformed, , with
the odd neutron in orbital and the energy -251.85 MeV which is close
to the data -252.06 MeV. The magnetic moment is
obtained with the effective electromagnetic current which well reproduces the
data self-consistently without introducing any
parameter. The energy splittings of time reversal conjugate states, the neutron
current, the energy contribution from the nuclear magnetic potential, and the
effect of core polarization are discussed in detail.Comment: 13 pages, 4 figure
Parity nonconservation effects in the photodesintegration of polarized deuterons
P-odd correlations in the deuteron photodesintegration are considered. The
-meson exchange is not operative in the case of unpolarized deuterons. For
polarized deuterons a P-odd correlation due to the -meson exchange is
about . Short-distance P-odd contributions exceed essentially
than the contribution of the -meson exchange.Comment: 12 pages, Latex, 3 figure
The Effect of the Pairing Interaction on the Energies of Isobar Analog Resonances in Sb and Isospin Admixture in Sn Isotopes
In the present study, the effect of the pairing interaction and the isovector
correlation between nucleons on the properties of the isobar analog resonances
(IAR) in Sb isotopes and the isospin admixture in Sn
isotopes is investigated within the framework of the quasiparticle random phase
approximation (QRPA). The form of the interaction strength parameter is related
to the shell model potential by restoring the isotopic invariance of the
nuclear part of the total Hamiltonian. In this respect, the isospin admixtures
in the Sn isotopes are calculated, and the dependence of the
differential cross section and the volume integral for the
Sn(He,t)Sb reactions at E(He) MeV occurring by the excitation
of IAR on mass number A is examined. Our results show that the calculated value
for the isospin mixing in the Sn isotope is in good agreement with Colo
et al.'s estimates , and the obtained values for the volume integral
change within the error range of the value reported by Fujiwara et al.
(535 MeV fm). Moreover, it is concluded that although the
differential cross section of the isobar analog resonance for the (He,t)
reactions is not sensitive to pairing correlations between nucleons, a
considerable effect on the isospin admixtures in isotopes can be
seen with the presence of these correlations.Comment: 16 pages, 5 EPS figures and 2 tables, Late
Parity Mixed Doublets in A = 36 Nuclei
The -circular polarizations () and asymmetries
() of the parity forbidden M1 + E2 -decays: MeV) and MeV)
MeV) are investigated theoretically. We use the recently proposed
Warburton-Becker-Brown shell-model interaction. For the weak forces we discuss
comparatively different weak interaction models based on different assumptions
for evaluating the weak meson-hadron coupling constants. The results determine
a range of values from which we find the most probable values:
= for and = for .Comment: RevTeX, 17 pages; to appear in Phys. Rev.
- …