3,240 research outputs found

    Survey Atlas of England and Wales

    Get PDF
    n/

    Modeling the effects of extracellular potassium on bursting properties in pre-Bötzinger complex neurons

    Get PDF
    There are many types of neurons that intrinsically generate rhythmic bursting activity, even when isolated, and these neurons underlie several specific motor behaviors. Rhythmic neurons that drive the inspiratory phase of respiration are located in the medullary pre-Bötzinger Complex (pre-BötC). However, it is not known if their rhythmic bursting is the result of intrinsic mechanisms or synaptic interactions. In many cases, for bursting to occur, the excitability of these neurons needs to be elevated. This excitation is provided in vitro (e.g. in slices), by increasing extracellular potassium concentration (K[subscript out]) well beyond physiologic levels. Elevated K[subscript out] shifts the reversal potentials for all potassium currents including the potassium component of leakage to higher values. However, how an increase in K[subscript out], and the resultant changes in potassium currents, induce bursting activity, have yet to be established. Moreover, it is not known if the endogenous bursting induced in vitro is representative of neural behavior in vivo. Our modeling study examines the interplay between K[subscript out], excitability, and selected currents, as they relate to endogenous rhythmic bursting. Starting with a Hodgkin-Huxley formalization of a pre-BötC neuron, a potassium ion component was incorporated into the leakage current, and model behaviors were investigated at varying concentrations of K[subscript out]. Our simulations show that endogenous bursting activity, evoked in vitro by elevation of K[subscript out], is the result of a specific relationship between the leakage and voltage-dependent, delayed rectifier potassium currents, which may not be observed at physiological levels of extracellular potassium.National Institutes of Health (U.S.) (National Center for Complementary and Integrative Health (U.S). Grant R01 AT008632)National Institutes of Health (U.S.) (National Institute of Neurological Disorders and Stroke (U.S.). Grant R01 NS069220

    Detection of functional PTEN lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus

    Get PDF
    The human tumour suppressor gene PTEN located at 10q23 is mutated in a variety of tumour types particularly metastatic cases and in the germline of some individuals with Cowdens cancer predisposition syndrome. We have assessed the status of PTEN and associated pathways in cell lines derived from 19 squamous cell carcinomas of the head and neck. Loss of heterozygosity is evident at, or close to the PTEN gene in 5 cases, however there were no mutations in the remaining alleles. Furthermore by Western analysis PTEN protein levels are normal in all of these SCC-HN tumours and cell lines. To assess the possibility that PTEN may be inactivated by another mechanism, we characterized lipid phosphatase levels and from a specific PIP3 biochemical assay it is clear that PTEN is functionally active in all 19 human SCCs. Our data strongly suggest the possibility that a tumour suppressor gene associated with development of SCC-HN, other than PTEN, is located in this chromosomal region. This gene does not appear to be MXI-1, which has been implicated in some other human tumour types. PTEN is an important negative regulator of PI3Kinase, of which subunit alpha is frequently amplified in SCC-HN. To examine the possibility that PI3K is upregulated by amplification in this tumour set we assessed the phosphorylation status of Akt, a downstream target of PI3K. In all cases there is no detectable increase in Akt phosphorylation. Therefore there is no detectable defect in the PI3K pathway in SCC-HN suggesting that the reason for 3q26.3 over-representation may be due to genes other than PI3K110α. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Photoactivation experiment on 197Au and its implications for the dipole strength in heavy nuclei

    Full text link
    The 197Au(gamma,n) reaction is used as an activation standard for photodisintegration studies on astrophysically relevant nuclei. At the bremsstrahlung facility of the superconducting electron accelerator ELBE (Electron Linear accelerator of high Brilliance and low Emittance) of Forschungszentrum Dresden-Rossendorf, photoactivation measurements on 197Au have been performed with bremsstrahlung endpoint energies from 8.0 to 15.5 MeV. The measured activation yield is compared with previous experiments as well as with calculations using Hauser-Feshbach statistical models. It is shown that the experimental data are best described by a two-Lorentzian parametrization with taking the axial deformation of 197Au into account. The experimental 197Au(gamma,n) reaction yield measured at ELBE via the photoactivation method is found to be consistent with previous experimental data using photon scattering or neutron detection methods.Comment: 9 page

    Secondary metabolite profiling of the model legume Lotus japonicus during its symbiotic interaction with Mesorhizobium loti

    Get PDF
    Plant secondary metabolites, particularly flavonoids, are key components in the early stages of nitrogen-fixing symbiosis. Despite their importance, the endogenous secondary metabolites involved in symbiosis have not yet been identified in the model legume Lotus japonicus. We therefore determined changes in the secondary metabolic profile of Lotus japonicus roots in response to its symbiont. Analysis of the root secondary metabolite profiles 1 week after inoculation with Mesorhizobium loti revealed quantitative changes in the level of 14 phenolic peaks when compared with non-inoculated control plants. These changes affected compounds from most phenolic classes, possibly resulting from interconversion between classes since the total phenolic level remained constant. In addition, the use of 2 M. loti strains differing only in their capacity to synthesise Nod factor revealed that, although Nod factor signalling induced accumulation of a specific subset of 4 phenolic peaks, most changes were induced in response to both rhizobial strains.NR was supported by a Training Network funded by the European Training Network EU-RTN-LOTUS-HPRN-CT-2000-00086. KJW was supported by core funding from the Biotechnology and Biological Science Research Council (BBSRC), UK.Peer Reviewe

    Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr

    Full text link
    The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However current vdW magnets are limited by their extreme sensitivity to air, low ordering temperatures, and poor charge transport properties. Here we report the magnetic and electronic properties of CrSBr, an air-stable vdW antiferromagnetic semiconductor that readily cleaves perpendicular to the stacking axis. Below its N\'{e}el temperature, TN=132±1T_N = 132 \pm 1 K, CrSBr adopts an A-type antiferromagnetic structure with each individual layer ferromagnetically ordered internally and the layers coupled antiferromagnetically along the stacking direction. Scanning tunneling spectroscopy and photoluminescence (PL) reveal that the electronic gap is ΔE=1.5±0.2\Delta_E = 1.5 \pm 0.2 eV with a corresponding PL peak centered at 1.25±0.071.25 \pm 0.07 eV. Using magnetotransport measurements, we demonstrate strong coupling between magnetic order and transport properties in CrSBr, leading to a large negative magnetoresistance response that is unique amongst vdW materials. These findings establish CrSBr as a promising material platform for increasing the applicability of vdW magnets to the field of spin-based electronics

    A review of issues in seagrass seed dormancy and germination: implications for conservation and restoration

    Get PDF
    Seagrasses have received considerable attention over the past 2 decades because of the multiple ecological roles they play in estuarine and coastal ecosystems and concerns over worldwide losses of seagrass habitat due to direct and indirect human impacts. Restoration and conservation efforts are underway in some areas of the world, but progress may be limited by the paucity of information on the role of seeds in bed dynamics. Although flowering occurs in most of the 58 seagrass species, seed germination data exist for only 19 of the 42 species that have some period of dormancy, with only 93 published references to field and/or laboratory studies. This review addresses critical issues in conservation and restoration of seagrasses involving seed dormancy (e.g. environmental vs physiological), existence and type of seed bank (transient or persistent), and factors influencing seed germination (e.g, salinity, temperature, light). Results of many earlier published studies relating seed germination to various environmental factors may need re-examination given more recent published data which show a confounding influence of oxygen level on the germination process. We highlight the importance of conducting ecologically meaningful germination studies, including germination experiments conducted in sediments. We also identify questions for future research that may figure prominently in landscape level questions regarding protected marine or estuarine reserves, habitat fragmentation, and restoration

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography
    • …
    corecore