30,019 research outputs found

    Experimentally Witnessing the Quantumness of Correlations

    Full text link
    The quantification of quantum correlations (other than entanglement) usually entails laboured numerical optimization procedures also demanding quantum state tomographic methods. Thus it is interesting to have a laboratory friendly witness for the nature of correlations. In this Letter we report a direct experimental implementation of such a witness in a room temperature nuclear magnetic resonance system. In our experiment the nature of correlations is revealed by performing only few local magnetization measurements. We also compare the witness results with those for the symmetric quantum discord and we obtained a fairly good agreement

    Multipartite Entanglement Signature of Quantum Phase Transitions

    Get PDF
    We derive a general relation between the non-analyticities of the ground state energy and those of a subclass of the multipartite generalized global entanglement (GGE) measure defined by T. R. de Oliveira et al. [Phys. Rev. A 73, 010305(R) (2006)] for many-particle systems. We show that GGE signals both a critical point location and the order of a quantum phase transition (QPT). We also show that GGE allows us to study the relation between multipartite entanglement and QPTs, suggesting that multipartite but not bipartite entanglement is favored at the critical point. Finally, using GGE we were able, at a second order QPT, to define a diverging entanglement length (EL) in terms of the usual correlation length. We exemplify this with the XY spin-1/2 chain and show that the EL is half the correlation length.Comment: Published version. Incorporates correction made in erratu

    Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth

    Full text link
    We report on the effect of substrate temperature (T) on both local structure and long-wavelength fluctuations of polycrystalline CdTe thin films deposited on Si(001). A strong T-dependent mound evolution is observed and explained in terms of the energy barrier to inter-grain diffusion at grain boundaries, as corroborated by Monte Carlo simulations. This leads to transitions from uncorrelated growth to a crossover from random-to-correlated growth and transient anomalous scaling as T increases. Due to these finite-time effects, we were not able to determine the universality class of the system through the critical exponents. Nevertheless, we demonstrate that this can be circumvented by analyzing height, roughness and maximal height distributions, which allow us to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang (KPZ) equation in a broad range of T. More important, one finds positive (negative) velocity excess in the growth at low (high) T, indicating that it is possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure

    Genuine Multipartite Entanglement in Quantum Phase Transitions

    Get PDF
    We demonstrate that the Global Entanglement (GE) measure defined by Meyer and Wallach, J. Math. Phys. 43, 4273 (2002), is maximal at the critical point for the Ising chain in a transverse magnetic field. Our analysis is based on the equivalence of GE to the averaged linear entropy, allowing the understanding of multipartite entanglement (ME) features through a generalization of GE for bipartite blocks of qubits. Moreover, in contrast to GE, the proposed ME measure can distinguish three paradigmatic entangled states: GHZNGHZ_{N}, WNW_{N}, and EPR⊗N/2EPR^{\otimes N/2}. As such the generalized measure can detect genuine ME and is maximal at the critical point.Comment: 4 pages, 3 figures. Replaced with final published versio

    Small violations of full correlation Bell inequalities for multipartite pure random states

    Full text link
    We estimate the probability of random NN-qudit pure states violating full-correlation Bell inequalities with two dichotomic observables per site. These inequalities can show violations that grow exponentially with NN, but we prove this is not the typical case. For many-qubit states the probability to violate any of these inequalities by an amount that grows linearly with NN is vanishingly small. If each system's Hilbert space dimension is larger than two, on the other hand, the probability of seeing \emph{any} violation is already small. For the qubits case we discuss furthermore the consequences of this result for the probability of seeing arbitrary violations (\emph i.e., of any order of magnitude) when experimental imperfections are considered.Comment: 16 pages, one colum
    • …
    corecore