1,693 research outputs found

    On the relation between viscoelastic and magnetohydrodynamic flows and their instabilities

    Get PDF
    We demonstrate a close analogy between a viscoelastic medium and an electrically conducting fluid containing a magnetic field. Specifically, the dynamics of the Oldroyd-B fluid in the limit of large Deborah number corresponds to that of a magnetohydrodynamic (MHD) fluid in the limit of large magnetic Reynolds number. As a definite example of this analogy, we compare the stability properties of differentially rotating viscoelastic and MHD flows. We show that there is an instability of the Oldroyd-B fluid that is physically distinct from both the inertial and elastic instabilities described previously in the literature, but is directly equivalent to the magnetorotational instability in MHD. It occurs even when the specific angular momentum increases outwards, provided that the angular velocity decreases outwards; it derives from the kinetic energy of the shear flow and does not depend on the curvature of the streamlines. However, we argue that the elastic instability of viscoelastic Couette flow has no direct equivalent in MHD.Comment: 21 pages, 3 figures, to be published in J. Fluid Mec

    A self-sustaining nonlinear dynamo process in Keplerian shear flows

    Full text link
    A three-dimensional nonlinear dynamo process is identified in rotating plane Couette flow in the Keplerian regime. It is analogous to the hydrodynamic self-sustaining process in non-rotating shear flows and relies on the magneto-rotational instability of a toroidal magnetic field. Steady nonlinear solutions are computed numerically for a wide range of magnetic Reynolds numbers but are restricted to low Reynolds numbers. This process may be important to explain the sustenance of coherent fields and turbulent motions in Keplerian accretion disks, where all its basic ingredients are present.Comment: 4 pages, 7 figures, accepted for publication in Physical Review Letter

    Magnetorotational-type instability in Couette-Taylor flow of a viscoelastic polymer liquid

    Full text link
    We describe an instability of viscoelastic Couette-Taylor flow that is directly analogous to the magnetorotational instability (MRI) in astrophysical magnetohydrodynamics, with polymer molecules playing the role of magnetic field lines. By determining the conditions required for the onset of instability and the properties of the preferred modes, we distinguish it from the centrifugal and elastic instabilities studied previously. Experimental demonstration and investigation should be much easier for the viscoelastic instability than for the MRI in a liquid metal. The analogy holds with the case of a predominantly toroidal magnetic field such as is expected in an accretion disk and it may be possible to access a turbulent regime in which many modes are unstable.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Robustly Unstable Eigenmodes of the Magnetoshearing Instability in Accretion Disk

    Get PDF
    The stability of nonaxisymmetric perturbations in differentially rotating astrophysical accretion disks is analyzed by fully incorporating the properties of shear flows. We verify the presence of discrete unstable eigenmodes with complex and pure imaginary eigenvalues, without any artificial disk edge boundaries, unlike Ogilvie & Pringle(1996)'s claim. By developing the mathematical theory of a non-self-adjoint system, we investigate the nonlocal behavior of eigenmodes in the vicinity of Alfven singularities at omega_D=omega_A, where omega_D is the Doppler-shifted wave frequency and omega_A=k_// v_A is the Alfven frequency. The structure of the spectrum of discrete eigenmodes is discussed and the magnetic field and wavenumber dependence of the growth rate are obtained. Exponentially growing modes are present even in a region where the local dispersion relation theory claims to have stable eigenvalues. The velocity field created by an eigenmode is obtained, which explains the anomalous angular momentum transport in the nonlinear stage of this stability.Comment: 11pages, 11figures, to be published in ApJ. For associated eps files, see http://dino.ph.utexas.edu/~knoguchi

    Evolution of Migrating Planets Undergoing Gas Accretion

    Full text link
    We analyze the orbital and mass evolution of planets that undergo run-away gas accretion by means of 2D and 3D hydrodynamic simulations. The disk torque distribution per unit disk mass as a function of radius provides an important diagnostic for the nature of the disk-planet interactions. We first consider torque distributions for nonmigrating planets of fixed mass and show that there is general agreement with the expectations of resonance theory. We then present results of simulations for mass-gaining, migrating planets. For planets with an initial mass of 5 Earth masses, which are embedded in disks with standard parameters and which undergo run-away gas accretion to one Jupiter mass (Mjup), the torque distributions per unit disk mass are largely unaffected by migration and accretion for a given planet mass. The migration rates for these planets are in agreement with the predictions of the standard theory for planet migration (Type I and Type II migration). The planet mass growth occurs through gas capture within the planet's Bondi radius at lower planet masses, the Hill radius at intermediate planet masses, and through reduced accretion at higher planet masses due to gap formation. During run-away mass growth, a planet migrates inwards by only about 20% in radius before achieving a mass of ~1 Mjup. For the above models, we find no evidence of fast migration driven by coorbital torques, known as Type III migration. We do find evidence of Type III migration for a fixed mass planet of Saturn's mass that is immersed in a cold and massive disk. In this case the planet migration is assumed to begin before gap formation completes. The migration is understood through a model in which the torque is due to an asymmetry in density between trapped gas on the leading side of the planet and ambient gas on the trailing side of the planet.Comment: 26 pages, 29 figures. To appear in The Astrophysical Journal vol.684 (September 20, 2008 issue

    Magnetohydrodynamic turbulence in warped accretion discs

    Get PDF
    Warped, precessing accretion discs appear in a range of astrophysical systems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In a warped accretion disc there are horizontal pressure gradients that drive an epicyclic motion. We have studied the interaction of this epicyclic motion with the magnetohydrodynamic turbulence in numerical simulations. We find that the turbulent stress acting on the epicyclic motion is comparable in size to the stress that drives the accretion, however an important ingredient in the damping of the epicyclic motion is its parametric decay into inertial waves.Comment: to appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.

    Global axisymmetric Magnetorotational Instability with density gradients

    Get PDF
    We examine global incompressible axisymmetric perturbations of a differentially rotating MHD plasma with radial density gradients. It is shown that the standard magnetorotational instability, (MRI) criterion drawn from the local dispersion relation is often misleading. If the equilibrium magnetic field is either purely axial or purely toroidal, the problem reduces to finding the global radial eigenvalues of an effective potential. The standard Keplerian profile including the origin is mathematically ill-posed, and thus any solution will depend strongly on the inner boundary. We find a class of unstable modes localized by the form of the rotation and density profiles, with reduced dependence on boundary conditions.Comment: 22 pages, 5 figure

    The response of a turbulent accretion disc to an imposed epicyclic shearing motion

    Get PDF
    We excite an epicyclic motion, whose amplitude depends on the vertical position, zz, in a simulation of a turbulent accretion disc. An epicyclic motion of this kind may be caused by a warping of the disc. By studying how the epicyclic motion decays we can obtain information about the interaction between the warp and the disc turbulence. A high amplitude epicyclic motion decays first by exciting inertial waves through a parametric instability, but its subsequent exponential damping may be reproduced by a turbulent viscosity. We estimate the effective viscosity parameter, αv\alpha_{\rm v}, pertaining to such a vertical shear. We also gain new information on the properties of the disc turbulence in general, and measure the usual viscosity parameter, αh\alpha_{\rm h}, pertaining to a horizontal (Keplerian) shear. We find that, as is often assumed in theoretical studies, αv\alpha_{\rm v} is approximately equal to αh\alpha_{\rm h} and both are much less than unity, for the field strengths achieved in our local box calculations of turbulence. In view of the smallness (∌0.01\sim 0.01) of αv\alpha_{\rm v} and αh\alpha_{\rm h} we conclude that for ÎČ=pgas/pmag∌10\beta = p_{\rm gas}/p_{\rm mag} \sim 10 the timescale for diffusion or damping of a warp is much shorter than the usual viscous timescale. Finally, we review the astrophysical implications.Comment: 12 pages, 18 figures, MNRAS accepte

    Turbulence and angular momentum transport in a global accretion disk simulation

    Get PDF
    The global development of magnetohydrodynamic turbulence in an accretion disk is studied within a simplified disk model that omits vertical stratification. Starting with a weak vertical seed field, a saturated state is obtained after a few tens of orbits in which the energy in the predominantly toroidal magnetic field is still subthermal. The efficiency of angular momentum transport, parameterized by the Shakura-Sunyaev alpha parameter, is of the order of 0.1. The dominant contribution to alpha comes from magnetic stresses, which are enhanced by the presence of weak net vertical fields. The power spectra of the magnetic fields are flat or decline only slowly towards the largest scales accessible in the calculation, suggesting that the viscosity arising from MHD turbulence may not be a locally determined quantity. I discuss how these results compare with observationally inferred values of alpha, and possible implications for models of jet formation.Comment: ApJ Letters, in press. The paper and additional visualizations are available at http://www.cita.utoronto.ca/~armitage/global_abs.htm
    • 

    corecore