61 research outputs found

    Systematic Functional Analysis of Bicaudal-D Serine Phosphorylation and Intragenic Suppression of a Female Sterile Allele of BicD

    Get PDF
    Protein phosphorylation is involved in posttranslational control of essentially all biological processes. Using mass spectrometry, recent analyses of whole phosphoproteomes led to the identification of numerous new phosphorylation sites. However, the function of most of these sites remained unknown. We chose the Drosophila Bicaudal-D protein to estimate the importance of individual phosphorylation events. Being involved in different cellular processes, BicD is required for oocyte determination, for RNA transport during oogenesis and embryogenesis, and for photoreceptor nuclei migration in the developing eye. The numerous roles of BicD and the available evidence for functional importance of BicD phosphorylation led us to identify eight phosphorylation sites of BicD, and we tested a total of 14 identified and suspected phosphoserine residues for their functional importance in vivo in flies. Surprisingly, all these serines turned out to be dispensable for providing sufficient basal BicD activity for normal growth and development. However, in a genetically sensitized background where the BicDA40V protein variant provides only partial activity, serine 103 substitutions are not neutral anymore, but show surprising differences. The S103D substitution completely inactivates the protein, whereas S103A behaves neutral, and the S103F substitution, isolated in a genetic screen, restores BicDA40V function. Our results suggest that many BicD phosphorylation events may either be fortuitous or play a modulating function as shown for Ser103. Remarkably, amongst the Drosophila serines we found phosphorylated, Ser103 is the only one that is fully conserved in mammalian BicD

    Distinct Roles of Non-Canonical Poly(A) Polymerases in RNA Metabolism

    Get PDF
    Trf4p and Trf5p are non-canonical poly(A) polymerases and are part of the heteromeric protein complexes TRAMP4 and TRAMP5 that promote the degradation of aberrant and short-lived RNA substrates by interacting with the nuclear exosome. To assess the level of functional redundancy between the paralogous Trf4 and Trf5 proteins and to investigate the role of the Trf4-dependent polyadenylation in vivo, we used DNA microarrays to compare gene expression of the wild-type yeast strain of S. cerevisiae with either that of trf4Ξ” or trf5Ξ” mutant strains or the trf4Ξ” mutant expressing the polyadenylation-defective Trf4(DADA) protein. We found little overlap between the sets of transcripts with altered expression in the trf4Ξ” or the trf5Ξ” mutants, suggesting that Trf4p and Trf5p target distinct groups of RNAs for degradation. Surprisingly, most RNAs the expression of which was altered by the trf4 deletion were restored to wild-type levels by overexpression of TRF4(DADA), showing that the polyadenylation activity of Trf4p is dispensable in vivo. Apart from previously reported Trf4p and Trf5p target RNAs, this analysis along with in vivo cross-linking and RNA immunopurification-chip experiments revealed that both the TRAMP4 and the TRAMP5 complexes stimulate the degradation of spliced-out introns via a mechanism that is independent of the polyadenylation activity of Trf4p. In addition, we show that disruption of trf4 causes severe shortening of telomeres suggesting that TRF4 functions in the maintenance of telomere length. Finally, our study demonstrates that TRF4, the exosome, and TRF5 participate in antisense RNA–mediated regulation of genes involved in phosphate metabolism. In conclusion, our results suggest that paralogous TRAMP complexes have distinct RNA selectivities with functional implications in RNA surveillance as well as other RNA–related processes. This indicates widespread and integrative functions of TRAMP complexes for the coordination of different gene expression regulatory processes

    Genome-wide search for breast cancer linkage in large Icelandic non-BRCA1/2 families

    Get PDF
    Abstract Introduction: A significant proportion of high-risk breast cancer families are not explained by mutations in known genes. Recent genome-wide searches (GWS) have not revealed any single major locus reminiscent of BRCA1 and BRCA2, indicating that still unidentified genes may explain relatively few families each or interact in a way obscure to linkage analyses. This has drawn attention to possible benefits of studying populations where genetic heterogeneity might be reduced. We thus performed a GWS for linkage on nine Icelandic multiple-case non-BRCA1/2 families of desirable size for mapping highly penetrant loci. To follow up suggestive loci, an additional 13 families from other Nordic countries were genotyped for selected markers. Methods: GWS was performed using 811 microsatellite markers providing about five centiMorgan (cM) resolution. Multipoint logarithm of odds (LOD) scores were calculated using parametric and nonparametric methods. For selected markers and cases, tumour tissue was compared to normal tissue to look for allelic loss indicative of a tumour suppressor gene. Results: The three highest signals were located at chromosomes 6q, 2p and 14q. One family contributed suggestive LOD scores (LOD 2.63 to 3.03, dominant model) at all these regions, without consistent evidence of a tumour suppressor gene. Haplotypes in nine affected family members mapped the loci to 2p23.2 to p21, 6q14.2 to q23.2 and 14q21.3 to q24.3. No evidence of a highly penetrant locus was found among the remaining families. The heterogeneity LOD (HLOD) at the 6q, 2p and 14q loci in all families was 3.27, 1.66 and 1.24, respectively. The subset of 13 Nordic families showed supportive HLODs at chromosome 6q (ranging from 0.34 to 1.37 by country subset). The 2p and 14q loci overlap with regions indicated by large families in previous GWS studies of breast cancer. Conclusions: Chromosomes 2p, 6q and 14q are candidate sites for genes contributing together to high breast cancer risk. A polygenic model is supported, suggesting the joint effect of genes in contributing to breast cancer risk to be rather common in non-BRCA1/2 families. For genetic counselling it would seem important to resolve the mode of genetic interaction

    Post-transcriptional gene regulation: From genome-wide studies to principles

    Get PDF
    Post-transcriptional regulation of gene expression plays important roles in diverse cellular processes such as development, metabolism and cancer progression. Whereas many classical studies explored the mechanistics and physiological impact on specific mRNA substrates, the recent development of genome-wide analysis tools enables the study of post-transcriptional gene regulation on a global scale. Importantly, these studies revealed distinct programs of RNA regulation, suggesting a complex and versatile post-transcriptional regulatory network. This network is controlled by specific RNA-binding proteins and/or non-coding RNAs, which bind to specific sequence or structural elements in the RNAs and thereby regulate subsets of mRNAs that partly encode functionally related proteins. It will be a future challenge to link the spectra of targets for RNA-binding proteins to post-transcriptional regulatory programs and to reveal its physiological implications

    Per-phosphoranylation of Alditols and Cyclitols

    No full text
    • …
    corecore