1,777 research outputs found

    Age spreads in star forming regions?

    Full text link
    Rotation periods and projected equatorial velocities of pre-main-sequence (PMS) stars in star forming regions can be combined to give projected stellar radii. Assuming random axial orientation, a Monte-Carlo model is used to illustrate that distributions of projected stellar radii are very sensitive to ages and age dispersions between 1 and 10 Myr which, unlike age estimates from conventional Hertzsprung-Russell diagrams, are relatively immune to uncertainties due to extinction, variability, distance etc. Application of the technique to the Orion Nebula cluster reveals radius spreads of a factor of 2--3 (FWHM) at a given effective temperature. Modelling this dispersion as an age spread suggests that PMS stars in the ONC have an age range larger than the mean cluster age, that could be reasonably described by the age distribution deduced from the Hertzsprung-Russell diagram. These radius/age spreads are certainly large enough to invalidate the assumption of coevality when considering the evolution of PMS properties (rotation, disks etc.) from one young cluster to another.Comment: To appear in "The Ages of Stars", E.E. Mamajek, D.R. Soderblom, R.F.G. Wyse (eds.), IAU Symposium 258, CU

    A Long-Lived Accretion Disk Around a Lithium-Depleted Binary T Tauri Star

    Get PDF
    We present a high dispersion optical spectrum of St 34 and identify the system as a spectroscopic binary with components of similar luminosity and temperature (both M3+/-0.5). Based on kinematics, signatures of accretion, and location on an H-R diagram, we conclude that St 34 is a classical T Tauri star belonging to the Taurus-Auriga T Association. Surprisingly, however, neither component of the binary shows LiI 6708 A, absorption, the most universally accepted criterion for establishing stellar youth. In this uniquely known instance, the accretion disk appears to have survived longer than the lithium depletion timescale. We speculate that the long-lived accretion disk is a consequence of the sub-AU separation companion tidally inhibiting, though not preventing, circumstellar accretion. Comparisons with pre-main sequence evolutionary models imply, for each component of St 34, a mass of 0.37+/-0.08 Msun and an isochronal age of 8+/-3 Myr, which is much younger than the predicted lithium depletion timescale of ~ 25 Myr. Although a distance 38% closer than that of Taurus-Auriga or a hotter temperature scale could reconcile this discrepancy at 21-25 Myr, similar discrepancies in other systems and the implications of an extremely old accreting Taurus-Auriga member suggest instead a possible problem with evolutionary models. Regardless, the older age implied by St 34's depleted lithium abundance is the first compelling evidence for a substantial age spread in this region. Additionally, since St 34's coeval co-members with early M spectral types would likewise fail the lithium test for youth, current membership lists may be incomplete.Comment: 4 pages, including 2 figures. Accepted for publication in ApJ Let

    Near-Infrared Photometric Variability of Stars Toward the Chamaeleon I Molecular Cloud

    Get PDF
    We present the results of a J, H, and K_s photometric monitoring campaign of a 0.72 x 6 sq deg. area centered on the Chamaeleon I star forming region. Data were obtained on 15 separate nights over a 4 month time interval using the 2MASS South telescope. Out of a total of 34,539 sources brighter than the photometric completeness limits (J=16.0, H=15.2, K_s=14.8), 95 exhibit near-infrared variability in one or more bands. The variables can be grouped into a population of bright, red objects that are associated with the Chamaeleon I association, and a population of faint, blue variables that are dispersed over the full 6 deg of the survey and are likely field stars or older pre-main-sequence stars unrelated to the present-day Chamaeleon I molecular cloud. Ten new candidate members of Chamaeleon I, including 8 brown dwarf candidates, have been identified based on variability and/or near-infrared excess emission in the J-H vs. H-K_s color-color-diagram. We also provide a compendium of astrometry and J, H, and K_s photometry for previously identified members and candidate members of Chamaeleon I.Comment: To appear in AJ; see http://www.astro.caltech.edu/~jmc/variables/cham1

    Evidence for Mass-dependent Circumstellar Disk Evolution in the 5 Myr Old Upper Scorpius OB Association

    Get PDF
    We present 4.5, 8, and 16 ”m photometry from the Spitzer Space Telescope for 204 stars in the Upper Scorpius OB association. The data are used to investigate the frequency and properties of circumstellar disks around stars with masses between ~0.1 and 20 M_☉ at an age of ~5 Myr. We identify 35 stars that have emission at 8 or 16 ”m in excess of the, stellar photosphere. The lower mass stars (~0.1–1.2M_☉) appear surrounded by primordial optically thick disks based on, the excess emission characteristics. Starsmoremassive than ~1.8M_☉ have lower fractional excess luminosities suggesting, that the inner ~10 AU of the disk has been largely depleted of primordial material. None of the G and F stars (~1.2–1.8 M_☉) in our sample have an infrared excess at wavelengths ≀16 ”m. These results indicate that the mechanisms for, dispersing primordial optically thick disks operate less efficiently, on average, for low-mass stars, and that longer timescales are available for the buildup of planetary systems in the terrestrial zone for stars with masses ≟1 M_☉

    VIRIS: A Visual-Infrared Imaging System for the Lick Observatory 1-M Telescope

    Get PDF
    We describe a system in use at the Lick Observatory 1-m Nickel telescope for near-simultaneous imaging at optical and near-infrared wavelengths. The combined availability of a CCD and a NICMOS-3 camera makes the system well-suited for photometric monitoring from 0.5-2.2 microns of a variety of astrophysical objects. Our science program thus far has concentrated on studying variability trends in young stellar objects.Comment: 11 pages LaTex, 3 Postscript figure, Pub. Astr. Soc. Pac. 1998, in pres

    The low-mass Initial Mass Function in the Orion Nebula cluster based on HST/NICMOS III imaging

    Full text link
    We present deep HST/NICMOS Camera 3 F110W and F160W imaging of a 26'x33', corresponding to 3.1pcx3.8pc, non-contiguous field towards the Orion Nebula Cluster (ONC). The main aim is to determine the ratio of low--mass stars to brown dwarfs for the cluster as a function of radius out to a radial distance of 1.5pc. The sensitivity of the data outside the nebulous central region is F160W=21.0 mag, significantly deeper than previous studies of the region over a comparable area. We create an extinction limited sample and determine the ratio of low-mass stars (0.08-1Msun) to brown dwarfs (0.02-0.08Msun and 0.03-0.08Msun) for the cluster as a whole and for several annuli. The ratio found for the cluster within a radius of 1.5pc is R(02)=N(0.08-1Msun)/N(0.02-0.08Msun)=1.7+-0.2, and R(03)=N(0.08-1Msun)/N(0.03-0.08Msun)=2.4+-0.2, after correcting for field stars. The ratio for the central 0.3pcx0.3pc region down to 0.03Msun was previously found to be R(03)=3.3+0.8-0.7, suggesting the low-mass content of the cluster is mass segregated. We discuss the implications of a gradient in the ratio of stars to brown dwarfs in the ONC in the context of previous measurements of the cluster and for other nearby star forming regions. We further discuss the current evidence for variations in the low-mass IMF and primordial mass segregation.Comment: Accepted to A&

    High-resolution Spectroscopy of [Ne II] Emission from TW Hya

    Full text link
    We present high-resolution echelle spectra of [Ne II] 12.81 micron emission from the classical T Tauri star (CTTS) TW Hya obtained with MICHELLE on Gemini North. The line is centered at the stellar radial velocity and has an intrinsic FWHM of 21\pm 4 km/s. The line width is broader than other narrow emission lines typically associated with the disk around TW Hya. If formed in a disk, the line broadening could result from turbulence in a warm disk atmosphere, Keplerian rotation at an average distance of 0.1 AU from the star, or a photoevaporative flow from the optically-thin region of the disk. We place upper limits on the [Ne II] emission flux from the CTTSs DP Tau and BP Tau.Comment: Accepted by ApJ. 18 pages, including 2 figures and 2 table

    Searching for young Jupiter analogs around AP Col: L-band high-contrast imaging of the closest pre-main sequence star

    Get PDF
    The nearby M-dwarf AP Col was recently identified by Riedel et al. 2011 as a pre-main sequence star (age 12 - 50 Myr) situated only 8.4 pc from the Sun. The combination of its youth, distance, and intrinsically low luminosity make it an ideal target to search for extrasolar planets using direct imaging. We report deep adaptive optics observations of AP Col taken with VLT/NACO and Keck/NIRC2 in the L-band. Using aggressive speckle suppression and background subtraction techniques, we are able to rule out companions with mass m >= 0.5 - 1M_Jup for projected separations a>4.5 AU, and m >= 2 M_Jup for projected separations as small as 3 AU, assuming an age of 40 Myr using the COND theoretical evolutionary models. Using a different set of models the mass limits increase by a factor of ~2. The observations presented here are the deepest mass-sensitivity limits yet achieved within 20 AU on a star with direct imaging. While Doppler radial velocity surveys have shown that Jovian bodies with close-in orbits are rare around M-dwarfs, gravitational microlensing studies predict that ~17% of these stars host massive planets with orbital separations of 1-10 AU. Sensitive high-contrast imaging observations, like those presented here, will help to validate results from complementary detection techniques by determining the frequency of gas giant planets on wide orbits around M-dwarfs.Comment: Accepted for publication in ApJ, 6 pages text ApJ style (incl. references), 4 figures, 1 tabl
    • 

    corecore