556 research outputs found

    Backscattered Electrons and Their Influence on Contrast in the Scanning Electron Microscope

    Get PDF
    The backscattered electron (BSE) induced secondaries (SE2) emerge from an area that is usually many orders of magnitude larger than the area in which the impinging primary probe releases secondary electrons (SE1). These SE2 secondary electrons form a) an undesired background signal in high resolution scanning micrographs and b) are responsible for the well known proximity effect in electron beam lithography. In this paper we focus our attention on the first topic exclusively: we discuss the complex influence of the SE2 on contrast in SEM micrographs (neglecting the components SE3 and SE4). We do this on the basis of our emission-microscopic measurements of the spatial distributions of SE1 and SE2 emerging from flat bulk specimens. By integrating these distributions in two dimensions we calculate the total number of SE1 and SE2 electrons and deduce the signal to backgroud ratio SE1/(SE1+SE2), i.e., the maximum contrast in one pixel ( single pixel contrast ) and the contrast of two adjacent pixels 1 and 2 according to its usual definition C= (I1 -I2)/(I1 +I2). We calculate the enhanced secondary emission factor for backscattered electrons from our total numbers of SE1 and SE2 for Si, Ge and Ag to Si=2.58, Ge=1.46, Ag=1,23

    Magnetism of Superconducting UPt3

    Full text link
    The phase diagram of superconducting U ⁣Pt3U\!Pt_{3} in pressure-temperature plane, together with the neutron scattering data is studied within a two component superconducting order parameter scenario. In order to give a qualitative explanation to the experimental data a set of two linearly independent antiferromagnetic moments which emerge appropriately at the temperature \mbox{TN10TcT_{N}\sim 10\cdot T_{c}} and \mbox{TmTcT_{m}\sim T_{c}} and couple to superconductivity is proposed. Several constraints on the fourth order coefficients in the Ginzburg-Landau free energy are obtained.Comment: 17 pages, figures available on request to [email protected]

    Silicon Superconducting Quantum Interference Device

    Full text link
    We have studied a Superconducting Quantum Interference SQUID device made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the Gas Immersion Laser Doping (GILD) technique. The SQUID device is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.Comment: Published in Applied Physics Letters (August 2015

    Theory of Neutron Diffraction from the Vortex Lattice in UPt3

    Full text link
    Neutron scattering experiments have recently been performed in the superconducting state of UPt3 to determine the structure of the vortex lattice. The data show anomalous field dependence of the aspect ratio of the unit cell in the B phase. There is apparently also a change in the effective coherence length on the transition from the B to the C phases. Such observations are not consistent with conventional superconductvity. A theory of these results is constructed based on a picture of two-component superconductivity for UPt3. In this way, these unusual observations can be understood. There is a possible discrepancy between theory and experiment in the detailed field dependence of the aspect ratio.Comment: 11 pages; uses REVTEX, APS and PRABIB styles; 2 Postscript figure files include

    A Scanning Hall Probe Microscope for high resolution, large area, variable height Magnetic Field Imaging

    No full text
    International audienceWe present a Scanning Hall Probe Microscope operating in ambient conditions. One of the unique features of this microscope is the use of the same stepper motors for both sample positioning as well as scanning, which makes it possible to have a large scan range (few mm) in x and y directions, with a scan resolution of 0.1 µm. Protocols have been implemented to enable scanning at different heights from the sample surface. The z range is 35 mm. Microstructured Hall probes of size 1-5 µm have been developed. A minimum probe-sample distance < 2 µm has been obtained by the combination of new Hall probes and probe-sample distance regulation using a tuning fork based force detection technique. The system is also capable of recording local B(z) profiles. We discuss the application of the microscope for the study of micro-magnet arrays being developed for applications in micro-system

    Theory of 'which path' dephasing in single electron interference due to trace in conductive environment

    Full text link
    A single-electron two-path interference (Young) experiment is considered theoretically. The decoherence of an electron wave packet due to the 'which path' trace left in the conducting (metallic) plate placed under the electron trajectories is calculated using the many-body quantum description of the electron gas reservoir.Comment: 11 pages, 5 figures, moderate changes, 1 new figure, updated reference

    Decoherence of electron beams by electromagnetic field fluctuations

    Full text link
    Electromagnetic field fluctuations are responsible for the destruction of electron coherence (dephasing) in solids and in vacuum electron beam interference. The vacuum fluctuations are modified by conductors and dielectrics, as in the Casimir effect, and hence, bodies in the vicinity of the beams can influence the beam coherence. We calculate the quenching of interference of two beams moving in vacuum parallel to a thick plate with permittivity ϵ(ω)=ϵ0+i4πσ/ω\epsilon(\omega)=\epsilon_{0}+i 4\pi\sigma/\omega. In case of an ideal conductor or dielectric (ϵ=)(|\epsilon|=\infty) the dephasing is suppressed when the beams are close to the surface of the plate, because the random tangential electric field EtE_{t}, responsible for dephasing, is zero at the surface. The situation is changed dramatically when ϵ0\epsilon_{0} or σ\sigma are finite. In this case there exists a layer near the surface, where the fluctuations of EtE_{t} are strong due to evanescent near fields. The thickness of this near - field layer is of the order of the wavelength in the dielectric or the skin depth in the conductor, corresponding to a frequency which is the inverse electron time of flight from the emitter to the detector. When the beams are within this layer their dephasing is enhanced and for slow enough electrons can be even stronger than far from the surface

    General relativistic corrections to the Sagnac effect

    Get PDF
    The difference in travel time of corotating and counter-rotating light waves in the field of a central massive and spinning body is studied. The corrections to the special relativistic formula are worked out in a Kerr field. Estimation of numeric values for the Earth and satellites in orbit around it show that a direct measurement is in the order of concrete possibilities.Comment: REVTex, accepted for publication on Phys. Rev.
    corecore