1,236 research outputs found
Non-equilibrium hydrodynamics of a rotating filament
The nonlinear dynamics of an elastic filament that is forced to rotate at its
base is studied by hydrodynamic simulation techniques; coupling between
stretch, bend, twist elasticity and thermal fluctuations is included. The
twirling-overwhirling transition is located and found to be strongly
discontinuous. For finite bend and twist persistence length, thermal
fluctuations lower the threshold rotational frequency, for infinite persistence
length the threshold agrees with previous analytical predictions
Instabilities and turbulence-like dynamics in an oppositely driven binary particle mixture
Using extensive particle-based simulations, we investigate out-of-equilibrium
pattern dynamics in an oppositely driven binary particle system in two
dimensions. A surprisingly rich dynamical behavior including lane formation,
jamming, oscillation and turbulence-like dynamics is found. The ratio of two
friction coefficients is a key parameter governing the stability of lane
formation. When the friction coefficient transverse to the external force
direction is sufficiently small compared to the longitudinal one, the lane
structure becomes unstable to shear-induced disturbances, and the system
eventually exhibits a dynamical transition into a novel turbulence-like phase
characterized by random convective flows. We numerically construct an
out-of-equilibrium phase diagram. Statistical analysis of complex
spatio-temporal dynamics of the fully nonlinear turbulence-like phase suggests
its apparent reminiscence to the swarming dynamics in certain active matter
systems.Comment: 6 pages, 6 figures, accepted for publication in EP
Dynamics of non-equilibrium membrane bud formation
The dynamical response of a lipid membrane to a local perturbation of its
molecular symmetry is investigated theoretically. A density asymmetry between
the two membrane leaflets is predominantly released by in-plane lipid diffusion
or membrane curvature, depending upon the spatial extent of the perturbation.
It may result in the formation of non-equilibrium structures (buds), for which
a dynamical size selection is observed. A preferred size in the micrometer
range is predicted, as a signature of the crossover between membrane and
solvent dominated dynamical membrane response.Comment: 7 pages 3 figure
Brownian motion in a non-homogeneous force field and photonic force microscope
The Photonic Force Microscope (PFM) is an opto-mechanical technique based on
an optical trap that can be assumed to probe forces in microscopic systems.
This technique has been used to measure forces in the range of pico- and
femto-Newton, assessing the mechanical properties of biomolecules as well as of
other microscopic systems. For a correct use of the PFM, the force field to
measure has to be invariable (homogeneous) on the scale of the Brownian motion
of the trapped probe. This condition implicates that the force field must be
conservative, excluding the possibility of a rotational component. However,
there are cases where these assumptions are not fulfilled Here, we show how to
improve the PFM technique in order to be able to deal with these cases. We
introduce the theory of this enhanced PFM and we propose a concrete analysis
workflow to reconstruct the force field from the experimental time-series of
the probe position. Furthermore, we experimentally verify some particularly
important cases, namely the case of a conservative or rotational force-field
Colloid-colloid and colloid-wall interactions in driven suspensions
We investigate the non-equilibrium fluid structure mediated forces between
two colloids driven through a suspension of mutually non-interacting Brownian
particles as well as between a colloid and a wall in stationary situations. We
solve the Smoluchowski equation in bispherical coordinates as well as with a
method of reflections, both in linear approximation for small velocities and
numerically for intermediate velocities, and we compare the results to a
superposition approximation considered previously. In particular we find an
enhancement of the friction (compared to the friction on an isolated particle)
for two colloids driven side by side as well as for a colloid traveling along a
wall. The friction on tailgating colloids is reduced. Colloids traveling side
by side experience a solute induced repulsion while tailgating colloids are
attracted to each other.Comment: 8 Pages, 8 figure
Brownian Dynamics of a Sphere Between Parallel Walls
We describe direct imaging measurements of a colloidal sphere's diffusion
between two parallel surfaces. The dynamics of this deceptively simple
hydrodynamically coupled system have proved difficult to analyze. Comparison
with approximate formulations of a confined sphere's hydrodynamic mobility
reveals good agreement with both a leading-order superposition approximation as
well as a more general all-images stokeslet analysis.Comment: 4 pages, 3 figures, REVTeX with PostScript figure
Tilted algebras and short chains of modules
We provide an affirmative answer for the question raised almost twenty years
ago concerning the characterization of tilted artin algebras by the existence
of a sincere finitely generated module which is not the middle of a short
chain
A frictionless microswimmer
We investigate the self-locomotion of an elongated microswimmer by virtue of
the unidirectional tangential surface treadmilling. We show that the propulsion
could be almost frictionless, as the microswimmer is propelled forward with the
speed of the backward surface motion, i.e. it moves throughout an almost
quiescent fluid. We investigate this swimming technique using the special
spheroidal coordinates and also find an explicit closed-form optimal solution
for a two-dimensional treadmiler via complex-variable techniques.Comment: 6 pages, 4 figure
Microscale swimming: The molecular dynamics approach
The self-propelled motion of microscopic bodies immersed in a fluid medium is
studied using molecular dynamics simulation. The advantage of the atomistic
approach is that the detailed level of description allows complete freedom in
specifying the swimmer design and its coupling with the surrounding fluid. A
series of two-dimensional swimming bodies employing a variety of propulsion
mechanisms -- motivated by biological and microrobotic designs -- is
investigated, including the use of moving limbs, changing body shapes and fluid
jets. The swimming efficiency and the nature of the induced, time-dependent
flow fields are found to differ widely among body designs and propulsion
mechanisms.Comment: 5 pages, 3 figures (minor changes to text
- …