2,832 research outputs found

    Chemical compatibility of cartridge materials

    Get PDF
    This twelve month progress report deals with the chemical compatibility of semiconductor crystals grown in zero gravity. Specifically, it studies the chemical compatibility between TZM, a molybdenum alloy containing titanium and zirconium, and WC 103, a titanium alloy containing Niobium and Hafnium, and Gallium arsenide (GaAs) and Cadmium Zinc Tellurite (CdZnTe). Due to the health hazards involved, three approaches were used to study the chemical compatibility between the semiconductor and cartridge materials: reaction retort, thermogravimetric analysis, and bulk cylindrical cartridge containers. A scanning electron microscope with an energy dispersive X-ray analyzer was used to examine all samples after testing. The first conclusion drawn is that reaction rates with TZM were not nearly as great as they were with WC 103. Second, the total reaction between GaAs and WC 103 was almost twice that with TZM. Therefore, even though WC 103 is easier to fabricate, at least half of the cartridge thickness will be degraded if contact is made with one of the semiconductor materials leading to a loss of strength properties

    Chemical compatibility of cartridge materials

    Get PDF
    The objectives were to determine the chemical compatibility of titanium-zirconium-molybdenum (TZM) with GaAs and CdZnTe, and Inconel with HgCdTe and HgZnTe. At the present time, no other studies regarding the compatibility of these crystal components and their respective cartridge materials have been performed. This study was to identify any possible problems between these materials to insure proper containment of possibly hazardous fumes during crystal growth experiments. In this study, the reaction zone between the materials was studied and the amount of degradation to the system was measured. Detailed results are presented

    Discontinuities without discontinuity: The Weakly-enforced Slip Method

    Full text link
    Tectonic faults are commonly modelled as Volterra or Somigliana dislocations in an elastic medium. Various solution methods exist for this problem. However, the methods used in practice are often limiting, motivated by reasons of computational efficiency rather than geophysical accuracy. A typical geophysical application involves inverse problems for which many different fault configurations need to be examined, each adding to the computational load. In practice, this precludes conventional finite-element methods, which suffer a large computational overhead on account of geometric changes. This paper presents a new non-conforming finite-element method based on weak imposition of the displacement discontinuity. The weak imposition of the discontinuity enables the application of approximation spaces that are independent of the dislocation geometry, thus enabling optimal reuse of computational components. Such reuse of computational components renders finite-element modeling a viable option for inverse problems in geophysical applications. A detailed analysis of the approximation properties of the new formulation is provided. The analysis is supported by numerical experiments in 2D and 3D.Comment: Submitted for publication in CMAM

    Pulsation period variations in the RRc Lyrae star KIC 5520878

    Full text link
    Learned et. al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly auto correlated, with correlation coefficients of prime numbers being significantly higher (p=99.8p=99.8\%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and even partly automated.Comment: Accepted for publication in ApJ. 49 pages, 16 figure

    Mach's Principle and Model for a Broken Symmetric Theory of Gravity

    Full text link
    We investigate spontaneous symmetry breaking in a conformally invariant gravitational model. In particular, we use a conformally invariant scalar tensor theory as the vacuum sector of a gravitational model to examine the idea that gravitational coupling may be the result of a spontaneous symmetry breaking. In this model matter is taken to be coupled with a metric which is different but conformally related to the metric appearing explicitly in the vacuum sector. We show that after the spontaneous symmetry breaking the resulting theory is consistent with Mach's principle in the sense that inertial masses of particles have variable configurations in a cosmological context. Moreover, our analysis allows to construct a mechanism in which the resulting large vacuum energy density relaxes during evolution of the universe.Comment: 9 pages, no figure

    Zee Model Confronts SNO Data

    Get PDF
    We reexamine the solution of the minimal Zee model by comparing with the data of the SNO experiment, and conclude that the model is strongly disfavored but not yet excluded by the observations. Two extensions of the Zee model are briefly discussed both of which introduce additional freedom and can accommodate the data.Comment: 16 pages LaTeX including 7 figure

    Markarian 421's Unusual Satellite Galaxy

    Get PDF
    We present Hubble Space Telescope (HST) imagery and photometry of the active galaxy Markarian 421 and its companion galaxy 14 arcsec to the ENE. The HST images indicate that the companion is a morphological spiral rather than elliptical as previous ground--based imaging has concluded. The companion has a bright, compact nucleus, appearing unresolved in the HST images. This is suggestive of Seyfert activity, or possibly a highly luminous compact star cluster. We also report the results of high dynamic range long-slit spectroscopy with the slit placed to extend across both galaxies and nuclei. We detect no emission lines in the companion nucleus, though there is evidence for recent star formation. Velocities derived from a number of absorption lines visible in both galaxies indicate that the two systems are probably tidally bound and thus in close physical proximity. Using the measured relative velocities, we derive a lower limit on the MKN 421 mass within the companion orbit (R \sim 10 kpc) of 5.9 \times 10^{11} solar masses, and a mass-to-light ratio of >= 17. Our spectroscopy also shows for the first time the presence of H\alpha and [NII] emission lines from the nucleus of MKN 421, providing another example of the appearance of new emission features in the previously featureless spectrum of a classical BL Lac object. We see both broad and narrow line emission, with a velocity dispersion of several thousand km s^{-1} evident in the broad lines.Comment: LaTeX (aaspp4 style), 28 pages, 8 figures, to appear in AJ. Revised text from ref. comments; new & modified figures; new photometry included; minor corrections of typos. Color version of Fig. 1 to appear in Feb. 2000 Sky & Telescop

    The Origin of Structures in Generalized Gravity

    Get PDF
    In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we can describe the quantum generation and the classical evolution of both the scalar and tensor structures in a simple and unified manner. An accelerated expansion phase based on the generalized gravity in the early universe drives microscopic quantum fluctuations inside a causal domain to expand into macroscopic ripples in the spacetime metric on scales larger than the local horizon. Following their generation from quantum fluctuations, the ripples in the metric spend a long period outside the causal domain. During this phase their evolution is characterized by their conserved amplitudes. The evolution of these fluctuations may lead to the observed large scale structures of the universe and anisotropies in the cosmic microwave background radiation.Comment: 5 pages, latex, no figur

    Solitons and Quasielectrons in the Quantum Hall Matrix Model

    Full text link
    We show how to incorporate fractionally charged quasielectrons in the finite quantum Hall matrix model.The quasielectrons emerge as combinations of BPS solitons and quasiholes in a finite matrix version of the noncommutative ϕ4\phi^4 theory coupled to a noncommutative Chern-Simons gauge field. We also discuss how to properly define the charge density in the classical matrix model, and calculate density profiles for droplets, quasiholes and quasielectrons.Comment: 15 pages, 9 figure

    Contribution of Genetics to the Susceptibility to Hidradenitis Suppurativa in a Large, Cross-Sectional Dutch Twin Cohort

    Get PDF
    IMPORTANCE Hidradenitis suppurativa is a chronic, inflammatory skin disease in which genetic factors are considered to play a role, with up to 38% of patients reporting a family history. Variations in the γ-secretase genes are found mainly in familial cases with an autosomal dominant pattern of inheritance. These variations are rare in the general population with hidradenitis suppurativa, even in patients who report a family history of the disease. OBJECTIVE To assess the heritability of hidradenitis suppurativa in a nationwide Dutch twin cohort. DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study on self-reported hidradenitis suppurativa conducted from 2011 to 2016, data were collected from twins participating in the surveys of the nationwide Netherlands Twin Register. All complete twin pairs answering the question on hidradenitis suppurativa in the survey were included: 978 female monozygotic twin pairs and 344 male monozygotic twin pairs and 426 female dizygotic twin pairs, 167 male dizygotic twin pairs, and 428 dizygotic twin pairs of the opposite sex. Statistical analysis was performed from July to November 2019. MAIN OUTCOMES AND MEASURES The main outcome is the proportion of susceptibility to hidradenitis suppurativa due to additive genetic factors (narrow-sense heritability), dominant genetic factors, common or shared environmental factors, or unshared or unique environmental factors. The main outcome was evaluated prior to data collection. RESULTS The prevalence of hidradenitis suppurativa among twin pairs was 1.2% (58 of 4686); the mean (SD) age was 32.7 (15.4) years. The narrow-sense heritability of hidradenitis suppurativa was 77% (95% CI, 54%-90%), with the remainder of the variance due to unshared or unique environmental factors based on an age-adjusted model combining additive genetic factors and unshared or unique environmental factors. CONCLUSIONS AND RELEVANCE The high heritability found in this study suggests a stronger than previously assumed genetic basis of hidradenitis suppurativa. Environmental factors were also shown to contribute to the susceptibility to hidradenitis suppurativa, supporting a multifactorial cause of the disease. Moreover, the results of this study strongly support the need for a global genome-wide association study in the general population of patients with hidradenitis suppurativa
    corecore