553 research outputs found
Vesicles in solutions of hard rods
The surface free energy of ideal hard rods near curved hard surfaces is
determined to second order in curvature for surfaces of general shape. In
accordance with previous results for spherical and cylindrical surfaces it is
found that this quantity is non-analytical when one of the principal curvatures
changes signs. This prohibits writing it in the common Helfrich form. It is
shown that the non-analytical terms are the same for any aspect ratio of the
rods. These results are used to find the equilibrium shape of vesicles immersed
in solutions of rod-like (colloidal) particles. The presence of the particles
induces a change in the equilibrium shape and to a shift of the prolate-oblate
transition in the vesicle phase diagram, which are calculated within the
framework of the spontaneous curvature model. As a consequence of the special
form of the energy contribution due to the rods these changes cannot be
accounted for by a simple rescaling of the elastic constants of the vesicle as
for solutions of spherical colloids or polymers.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
Survivability in hierarchical telecommunications networks under dual homing
Cataloged from PDF version of article.The motivation behind this study is the essential need for survivability in the telecommunications networks.
An optical signal should find its destination even if the network experiences an occasional fiber cut. We consider
the design of a two-level survivable telecommunications network. Terminals compiling the access layer
communicate through hubs forming the backbone layer. To hedge against single link failures in the network,
we require the backbone subgraph to be two-edge connected and the terminal nodes to connect to the backbone
layer in a dual-homed fashion, i.e., at two distinct hubs. The underlying design problem partitions a given
set of nodes into hubs and terminals, chooses a set of connections between the hubs such that the resulting
backbone network is two-edge connected, and for each terminal chooses two hubs to provide the dual-homing
backbone access. All of these decisions are jointly made based on some cost considerations. We give alternative
formulations using cut inequalities, compare these formulations, provide a polyhedral analysis of the smallsized
formulation, describe valid inequalities, study the associated separation problems, and design variable
fixing rules. All of these findings are then utilized in devising an efficient branch-and-cut algorithm to solve
this network design problem
Membranes in rod solutions: a system with spontaneously broken symmetry
We consider a dilute solution of infinitely rigid rods near a curved,
perfectly repulsive surface and study the contribution of the rod depletion
layer to the bending elastic constants of membranes. We find that a spontaneous
curvature state can be induced by exposure of BOTH sides of the membrane to a
rod solution. A similar result applies for rigid disks with a diameter equal to
the rod's length. We also study the confinement of rods in spherical and
cylindrical repulsive shells. This helps elucidate a recent discussion on
curvature effects in confined quantum mechanical and polymer systems.Comment: 10 pages, 2 figures, 1 table; submitted to PR
Recommended from our members
The frequency modulated auditory evoked response (FMAER), a technical advance for study of childhood language disorders: cortical source localization and selected case studies
Background: Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results: FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion: The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral responses. Serial FMAERs may be useful for tracking language change in LKS. Cortical FMAERs may augment invasive cortical language testing in epilepsy surgical patients. The FMAER may be normal in ASD and other language disorders when pathology spares the superior temporal gyrus and surround but presumably involves other brain regions. Ear/mastoid reference electrodes should be avoided and multichannel, reference free recordings utilized. Source analysis may assist in better understanding of complex FMAER findings
Dynamic Collection Scheduling Using Remote Asset Monitoring: Case Study in the UK Charity Sector
Remote sensing technology is now coming onto the market in the waste collection sector. This technology allows waste and recycling receptacles to report their fill levels at regular intervals. This reporting enables collection schedules to be optimized dynamically to meet true servicing needs in a better way and so reduce transport costs and ensure that visits to clients are made in a timely fashion. This paper describes a real-life logistics problem faced by a leading UK charity that services its textile and book donation banks and its high street stores by using a common fleet of vehicles with various carrying capacities. Use of a common fleet gives rise to a vehicle routing problem in which visits to stores are on fixed days of the week with time window constraints and visits to banks (fitted with remote fill-monitoring technology) are made in a timely fashion so that the banks do not become full before collection. A tabu search algorithm was developed to provide vehicle routes for the next day of operation on the basis of the maximization of profit. A longer look-ahead period was not considered because donation rates to banks are highly variable. The algorithm included parameters that specified the minimum fill level (e.g., 50%) required to allow a visit to a bank and a penalty function used to encourage visits to banks that are becoming full. The results showed that the algorithm significantly reduced visits to banks and increased profit by up to 2.4%, with the best performance obtained when the donation rates were more variable
Depletion forces near a soft surface
We investigate excluded-volume effects in a bidisperse colloidal suspension
near a flexible interface. Inspired by a recent experiment by Dinsmore et al.
(Phys. Rev, Lett. 80, 409 (1998)), we study the adsorption of a mesoscopic bead
on the surface and show that depletion forces could in principle lead to
particle encapsulation. We then consider the effect of surface fluctuations on
the depletion potential itself and construct the density profile of a polymer
solution near a soft interface. Surprisingly we find that the chains accumulate
at the wall, whereas the density displays a deficit of particles at distances
larger than the surface roughness. This non-monotonic behavior demonstrates
that surface fluctuations can have major repercusions on the properties of a
colloidal solution. On average, the additional contribution to the Gibbs
adsorbance is negative. The amplitude of the depletion potential between a
mesoscopic bead and the surface increases accordingly.Comment: 10 pages, 5 figure
Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images.
Diabetic retinopathy (DR) is a common complication of diabetes that can lead to progressive vision loss. Regular surveillance with fundal photography, early diagnosis, and prompt intervention are paramount to reducing the incidence of DR-induced vision loss. However, manual interpretation of fundal photographs is subject to human error. In this study, a new method based on horizontal and vertical patch division was proposed for the automated classification of DR images on fundal photographs. The novel sides of this study are given as follows. We proposed a new non-fixed-size patch division model to obtain high classification results and collected a new fundus image dataset. Moreover, two datasets are used to test the model: a newly collected three-class (normal, non-proliferative DR, and proliferative DR) dataset comprising 2355 DR images and the established open-access five-class Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 dataset comprising 3662 images. Two analysis scenarios, Case 1 and Case 2, with three (normal, non-proliferative DR, and proliferative DR) and five classes (normal, mild DR, moderate DR, severe DR, and proliferative DR), respectively, were derived from the APTOS 2019 dataset. These datasets and these cases have been used to demonstrate the general classification performance of our proposal. By applying transfer learning, the last fully connected and global average pooling layers of the DenseNet201 architecture were used to extract deep features from input DR images and each of the eight subdivided horizontal and vertical patches. The most discriminative features are then selected using neighborhood component analysis. These were fed as input to a standard shallow cubic support vector machine for classification. Our new DR dataset obtained 94.06% and 91.55% accuracy values for three-class classification with 80:20 hold-out validation and 10-fold cross-validation, respectively. As can be seen from steps of the proposed model, a new patch-based deep-feature engineering model has been proposed. The proposed deep-feature engineering model is a cognitive model, since it uses efficient methods in each phase. Similar excellent results were seen for three-class classification with the Case 1 dataset. In addition, the model attained 87.43% and 84.90% five-class classification accuracy rates using 80:20 hold-out validation and 10-fold cross-validation, respectively, on the Case 2 dataset, which outperformed prior DR classification studies based on the five-class APTOS 2019 dataset. Our model attained about >2% classification results compared to others. These findings demonstrate the accuracy and robustness of the proposed model for classification of DR images
Charge-Fluctuation-Induced Non-analytic Bending Rigidity
In this Letter, we consider a neutral system of mobile positive and negative
charges confined on the surface of curved films. This may be an appropriate
model for: i) a highly charged membrane whose counterions are confined to a
sheath near its surface; ii) a membrane composed of an equimolar mixture of
anionic and cationic surfactants in aqueous solution. We find that the charge
fluctuations contribute a non-analytic term to the bending rigidity that varies
logarithmically with the radius of curvature. This may lead to spontaneous
vesicle formation, which is indeed observed in similar systems.Comment: Revtex, 9 pages, no figures, submitted to PR
Algorithm Engineering in Robust Optimization
Robust optimization is a young and emerging field of research having received
a considerable increase of interest over the last decade. In this paper, we
argue that the the algorithm engineering methodology fits very well to the
field of robust optimization and yields a rewarding new perspective on both the
current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and
analysis of concepts, development and implementation of algorithms, and
theoretical and experimental evaluation. We show that many ideas of algorithm
engineering have already been applied in publications on robust optimization.
Most work on robust optimization is devoted to analysis of the concepts and the
development of algorithms, some papers deal with the evaluation of a particular
concept in case studies, and work on comparison of concepts just starts. What
is still a drawback in many papers on robustness is the missing link to include
the results of the experiments again in the design
- …