1,969 research outputs found

    The Calibration of the WISE W1 and W2 Tully-Fisher Relation

    Get PDF
    In order to explore local large-scale structures and velocity fields, accurate galaxy distance measures are needed. We now extend the well-tested recipe for calibrating the correlation between galaxy rotation rates and luminosities -- capable of providing such distance measures -- to the all-sky, space-based imaging data from the Wide-field Infrared Survey Explorer (WISE) W1 (3.4μ3.4\mum) and W2 (4.6μ4.6\mum) filters. We find a linewidth to absolute magnitude correlation (known as the Tully-Fisher Relation, TFR) of MW1b,i,k,a=20.359.56(logWmxi2.5)\mathcal{M}^{b,i,k,a}_{W1} = -20.35 - 9.56 (\log W^i_{mx} - 2.5) (0.54 magnitudes rms) and MW2b,i,k,a=19.769.74(logWmxi2.5)\mathcal{M}^{b,i,k,a}_{W2} = -19.76 - 9.74 (\log W^i_{mx} - 2.5) (0.56 magnitudes rms) from 310 galaxies in 13 clusters. We update the I-band TFR using a sample 9% larger than in Tully & Courtois (2012). We derive MIb,i,k=21.348.95(logWmxi2.5)\mathcal{M}^{b,i,k}_I = -21.34 - 8.95 (\log W^i_{mx} - 2.5) (0.46 magnitudes rms). The WISE TFRs show evidence of curvature. Quadratic fits give MW1b,i,k,a=20.488.36(logWmxi2.5)+3.60(logWmxi2.5)2\mathcal{M}^{b,i,k,a}_{W1} = -20.48 - 8.36 (\log W^i_{mx} - 2.5) + 3.60 (\log W^i_{mx} - 2.5)^2 (0.52 magnitudes rms) and MW2b,i,k,a=19.918.40(logWmxi2.5)+4.32(logWmxi2.5)2\mathcal{M}^{b,i,k,a}_{W2} = -19.91 - 8.40 (\log W^i_{mx} - 2.5) + 4.32 (\log W^i_{mx} - 2.5)^2 (0.55 magnitudes rms). We apply an I-band -- WISE color correction to lower the scatter and derive MCW1=20.229.12(logWmxi2.5)\mathcal{M}_{C_{W1}} = -20.22 - 9.12 (\log W^i_{mx} - 2.5) and MCW2=19.639.11(logWmxi2.5)\mathcal{M}_{C_{W2}} = -19.63 - 9.11 (\log W^i_{mx} - 2.5) (both 0.46 magnitudes rms). Using our three independent TFRs (W1 curved, W2 curved and I-band), we calibrate the UNION2 supernova Type Ia sample distance scale and derive H0=74.4±1.4H_0 = 74.4 \pm 1.4(stat) ± 2.4\pm\ 2.4(sys) kms1^{-1} Mpc1^{-1} with 4% total error.Comment: 22 page, 21 figures, accepted to ApJ, Table 1 data at http://spartan.srl.caltech.edu/~neill/tfwisecal/table1.tx

    Secondary phi meson peak as an indicator of QCD phase transition in ultrarelativistic heavy ion collisions

    Get PDF
    In a previous paper, we have shown that a double phi peak structure appears in the dilepton invariant mass spectrum if a first order QCD phase transition occurs in ultrarelativistic heavy ion collisions. Furthermore, the transition temperature can be determined from the transverse momentum distribution of the low mass phi peak. In this work, we extend the study to the case that a smooth crossover occurs in the quark-gluon plasma to the hadronic matter transition. We find that the double phi peak structure still exists in the dilepton spectrum and thus remains a viable signal for the formation of the quark-gluon plasma in ultrarelativistic heavy ion collisions.Comment: 8 pages, 9 uuencoded postscript figures included, Latex, LBL-3572

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl

    Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns

    Full text link
    We reconstructed the 3D Fourier intensity distribution of mono-disperse prolate nano-particles using single-shot 2D coherent diffraction patterns collected at DESY's FLASH facility when a bright, coherent, ultrafast X-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured fluctuations in photon fluence and loss of data due to saturation or background scatter. This work is an important step towards realizing single-shot diffraction imaging of single biomolecules.Comment: 4 pages, 4 figure

    Diffusion processes and growth on stepped metal surfaces

    Full text link
    We study the dynamics of adatoms in a model of vicinal (11m) fcc metal surfaces. We examine the role of different diffusion mechanisms and their implications to surface growth. In particular, we study the effect of steps and kinks on adatom dynamics. We show that the existence of kinks is crucially important for adatom motion along and across steps. Our results are in agreement with recent experiments on Cu(100) and Cu(1,1,19) surfaces. The results also suggest that for some metals exotic diffusion mechanisms may be important for mass transport across the steps.Comment: 3 pages, revtex, complete file available from ftp://rock.helsinki.fi/pub/preprints/tft/ or at http://www.physics.helsinki.fi/tft/tft_preprints.html (to appear in Phys. Rev. B Rapid Comm.

    Competing mechanisms for step meandering in unstable growth

    Full text link
    The meander instability of a vicinal surface growing under step flow conditions is studied within a solid-on-solid model. In the absence of edge diffusion the selected meander wavelength agrees quantitatively with the continuum linear stability analysis of Bales and Zangwill [Phys. Rev. B {\bf 41}, 4400 (1990)]. In the presence of edge diffusion a local instability mechanism related to kink rounding barriers dominates, and the meander wavelength is set by one-dimensional nucleation. The long-time behavior of the meander amplitude differs in the two cases, and disagrees with the predictions of a nonlinear step evolution equation [O. Pierre-Louis et al., Phys. Rev. Lett. {\bf 80}, 4221 (1998)]. The variation of the meander wavelength with the deposition flux and with the activation barriers for step adatom detachment and step crossing (the Ehrlich-Schwoebel barrier) is studied in detail. The interpretation of recent experiments on surfaces vicinal to Cu(100) [T. Maroutian et al., Phys. Rev. B {\bf 64}, 165401 (2001)] in the light of our results yields an estimate for the kink barrier at the close packed steps.Comment: 8 pages, 7 .eps figures. Final version. Some errors in chapter V correcte

    Extinction law variations and dust excitation in the spiral galaxy NGC 300

    Get PDF
    We investigate the origin of the strong radial gradient in the ultraviolet-to-infrared ratio in the spiral galaxy NGC 300, and emphasize the importance of local variations in the interstellar medium geometry, concluding that they cannot be neglected with respect to metallicity effects. This analysis is based upon a combination of maps from GALEX and Spitzer, and from the ground (UBVRI, Halpha and Hbeta). We select ionizing stellar clusters associated with HII regions of widely varying morphologies, and derive their fundamental parameters from population synthesis fitting of their spectral energy distributions, measured to eliminate local backgrounds accurately. From these fits, we conclude that the stellar extinction law is highly variable in the line of sight of young clusters of similar ages. In the particular model geometry that we consider most appropriate to the sampled regions, we checked that our findings are not significantly altered by the correct treatment of radiative transfer effects. The variations are systematic in nature: extinction laws of the Milky Way or LMC type are associated with compact HII regions (the compacity being quantified in two different ways), while clusters surrounded by diffuse HII regions follow extinction laws of the 30 Doradus or SMC type. The Calzetti starburst attenuation law, although most often degenerate with the 30 Doradus extinction law, overpredicts ionizing photon fluxes by large amounts. We also find that the extinction law variations are correlated with the column density of dust species emitting in the near- and mid-infrared. Finally, we briefly discuss the nebular to stellar extinction ratios, and the excitation of aromatic band carriers, invalidating their claimed association with cold dust.Comment: accepted for publication in ApJ -- figure 6 abridged her
    corecore