5,961 research outputs found

    Community-based intervention trials

    Get PDF
    The randomized controlled trial has become the standard basis for the evaluation of new therapeutic agents and procedures (and for measuring the protective efficacy of new vaccines or for assessing the value of screening procedures). Patients, who have met the criteria for eligibility and have agreed to participate in the trial, are allocated on a random basis to the alternative therapies under consideration. In order to avoid possible bias in the handling or assessment of these groups, a double blind procedure is preferred; the therapy given is not known to those who administer it, to those who assess the course of the disease thereafter, nor to the patients themselves. There is an extensive literature on clinical trials covering their logic and history, modern developments and the many complex, often controversial, issues that such trials have provoked. Not all issues have been fully resolved but by and large the principle, the practice and the ethical concerns of clinical trials are worked out and firmly establishe

    Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea

    Get PDF
    Concurrent measurements of the spectral absorption coefficient and photosynthetic pigmentation of natural particulates were performed to determine the principal pigments responsible for the absorption of spectral irradiance in seawater. The spectral absorption coefficient, Ap(λ), was then analyzed by taking the second and fourth derivatives with respect to wavelength. The wavelength and magnitude of these derivative values provide useful information regarding the identification and quantification of phytoplankton pigments responsible for a given spectral signature. Linear relationships were examined and established between derivative values at selected wavelengths and concentrations of the major tetrapyrrole pigments, specifically chlorophylls a, b, and c. The correlation between derivative values near 526 nm and concentrations of photosynthetic carotenoids was poor and presumably caused by the broad absorption spectra of these pigments. A comparison of the measured particulate absorption coefficient with the absorption coefficient reconstructed for the phytoplankton component revealed that detritus can be a major source of light absorption. The method described here provides a rapid means of obtaining estimates of photosynthetic pigment concentrations in natural samples where absorption can be strongly influenced by detrital matter

    Association of Chorioamnionitis with Aberrant Neonatal Gut Colonization and Adverse Clinical Outcomes.

    Get PDF
    ObjectiveChorioamnionitis (inflammation of the placenta and fetal membranes) and abnormal gastrointestinal colonization have been associated with an increased risk of sepsis and death in preterm infants, but whether chorioamnionitis causes abnormal pioneering gastrointestinal colonization in infants is not known. We determined the relationship between chorioamnionitis, altered infant fecal microbiome indicating abnormal gastrointestinal colonization, and adverse outcomes.Study designPreterm infants ≤ 28 weeks at birth were enrolled from 3 level III NICUs in Cincinnati, Ohio and Birmingham, Alabama. Sequencing for 16S microbial gene was performed on stool samples in the first 3 weeks of life. Chorioamnionitis was diagnosed by placental histology. Late onset sepsis and death outcomes were analyzed in relation to fecal microbiota and chorioamnionitis with or without funisitis (inflammation of the umbilical cord).ResultsOf the 106 enrolled infants, 48 infants had no chorioamnionitis, 32 infants had chorioamnionitis but no funisitis (AC), and 26 infants had chorioamnionitis with funisitis (ACF). The fecal samples from ACF infants collected by day of life 7 had higher relative abundance of family Mycoplasmataceae (phylum Tenericutes), genus Prevotella (phylum Bacteroidetes) and genus Sneathia (phylum Fusobacteria). Further, AC and ACF infants had higher incidence of late-onset sepsis/death as a combined outcome. Presence of specific clades in fecal samples, specifically, order Fusobacteria, genus Sneathia or family Mycoplasmataceae, were significantly associated with higher risk of sepsis or death.ConclusionThe results support the hypothesis that specific alterations in the pioneering infant gastrointestinal microbiota induced by chorioamnionitis predispose to neonatal sepsis or death

    Further studies of space-time clustering of Burkitt's lymphoma in Uganda.

    Get PDF
    All hospital-treated cases of Burkitt's lymphoma (BL), with onset of symptoms in the period 1963-68 and resident in the Lango and Acholi districts of Uganda, were identified. The average annual incidence of BL in the 6-year period was 1-87 X 10(-5), similar to that in the adjacent West Nile district. Contrary to findings in other areas of Uganda, there was no evidence of seasonal variation in the onset of cases, nor of space-time clustering, nor of a decline in the incidence of BL in the study period. An inverse relationship was noted between the median age at onset of BL and the incidence of the disease in different areas of Uganda, a finding consistent with intense malarial infection being a precipitating factor for BL. The variable observations with respect to space-time clustering of BL and seasonal variation in incidence in different areas remains unexplained, but it is suggested that a closer study of the patterns of malarial infection in these areas may help to account for the findings

    Micro-optics technology and sensor systems applications

    Get PDF
    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications

    Utility of patient-derived lymphoblastoid cell lines as an ex vivo capecitabine sensitivity prediction model for breast cancer patients.

    Get PDF
    Capecitabine is commonly used in treating breast cancer; however, therapeutic response varies among patients and there is no clinically validated model to predict individual outcomes. Here, we investigated whether drug sensitivity quantified in ex vivo patients' blood-derived cell lines can predict response to capecitabine in vivo. Lymphoblastoid cell lines (LCLs) were established from a cohort of metastatic breast cancer patients (n = 53) who were prospectively monitored during treatment with single agent capecitabine at 2000 mg/m2/day. LCLs were treated with increasing concentrations of 5'-DFUR, a major capecitabine metabolite, to assess patients' ex vivo sensitivity to this drug. Subsequently, ex vivo phenotype was compared to observed patient disease response and drug induced-toxicities. We acquired an independent cohort of breast cancer cell lines and LCLs derived from the same donors from ATCC, compared their sensitivity to 5'-DFUR. As seen in the patient population, we observed large inter-individual variability in response to 5'-DFUR treatment in patient-derived LCLs. Patients whose LCLs were more sensitive to 5'-DFUR had a significantly longer median progression free survival (9-month vs 6-month, log rank p-value = 0.017). In addition, this significant positive correlation for 5'-DFUR sensitivity was replicated in an independent cohort of 8 breast cancer cell lines and LCLs derived from the same donor. Our data suggests that at least a portion of the individual sensitivity to capecitabine is shared between germline tissue and tumor tissue. It also supports the utility of patient-derived LCLs as a predictive model for capecitabine treatment efficacy in breast cancer patients

    The 2010 AOP Workshop Summary Report

    Get PDF
    The rationale behind the current workshop, which was hosted by Biospherical Instruments Inc. (BSI), was to update the community and get community input with respect to the following: topics not addressed during the first workshop, specifically the processing of above-water apparent optical property (AOP data) within the Processing of Radiometric Observations of Seawater using Information Technologies (PROSIT) architecture; PROSIT data processing issues that have developed or tasks that have been completed, since the first workshop; and NASA instrumentation developments, both above- and in-water, that are relevant to both workshops and next generation mission planning. The workshop emphasized presentations on new AOP instrumentation, desired and required features for processing above-water measurements of the AOPs of seawater, working group discussions, and a community update for the in-water data processing already present in PROSIT. The six working groups were organized as follows: a) data ingest and data products; b) required and desired features for optically shallow and optically deep waters; c) contamination rejection (clouds), corrections, and data filtering; d) sun photometry and polarimetry; e) instrumentation networks; and f) hyperspectral versus fixed-wavelength sensors. The instrumentation networks working group was intended to provide more detailed information about desired and required features of autonomous sampling systems. Plenary discussions produced a number of recommendations for evolving and documenting PROSIT

    Seed Storage Reserves and Glucosinolates in Brassica rapa L. Grown on the International Space Station

    Get PDF
    Although plants are envisioned to play a central role in life support systems for future long-duration space travel, plant growth in space has been problematic due to horticultural problems of nutrient delivery and gas resupply posed by the weightless environment. Iterative improvement in hardware designed for growth of plants on orbital platforms now provides confidence that plants can perform well in microgravity, enabling investigation of their nutritional characteristics. Plants of B. rapa (cv. Astroplants) were grown in the Biomass Production System on the International Space Station. Flowers were hand-pollinated and seeds were produced prior to harvest at 39 days after planting. The material was frozen or fixed while on orbit and subsequently analyzed in our laboratories. Gross measures of growth, leaf chlorophyll, starch and soluble carbohydrates confirmed comparable performance by the plants in spaceflight and ground control treatments. Analysis of glucosinolate production in the plant stems indicated that 3-butenylglucosinolate concentration was on average 75% greater in flight samples than in ground control samples. Similarly, the biochemical make-up of immature seeds produced during spaceflight and fixed or frozen while in orbit was significantly different from the ground controls. The immature seeds from the spaceflight treatment had higher concentrations of chlorophyll, starch, and soluble carbohydrates than the ground controls. Seed protein was significantly lower in the spaceflight material. Microscopy of immature seeds fixed in flight showed embryos to be at a range of developmental stages, while the ground control embryos had all reached the premature stage of development. Storage reserve deposition was more advanced in the ground control seeds. The spaceflight environment thus influences B. rapa metabolite production in ways that may affect flavor and nutritional quality of potential space produce

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm−2^{-2}, yielding the value 1.2(1)×10−151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let
    • …
    corecore