2,002,142 research outputs found

    Black Holes in (Quartic) Quasitopological Gravity

    Full text link
    We construct quartic quasitopological gravity, a theory of gravity containing terms quartic in the curvature that yields second order differential equations in the spherically symmetric case. Up to a term proportional to the quartic term in Lovelock gravity we find a unique solution for this quartic case, valid in any dimensionality larger than 4 except 8. This case is the highest degree of curvature coupling for which explicit black hole solutions can be constructed, and we obtain and analyze the various black hole solutions that emerge from the field equations in (n+1)(n+1) dimensions. We discuss the thermodynamics of these black holes and compute their entropy as a function of the horizon radius. We then make some general remarks about KK-th order quasitopological gravity, and point out that the basic structure of the solutions will be the same in any dimensionality for general KK apart from particular cases.Comment: LaTex, 9 figures, 27 pages. A new section on holographic hydrodynamics is added. Introduction and concluding remarks have been revise

    Durability testing at one atmosphere of advanced catalysts and catalyst supports for automotive gas turbine engine combustors, part 1

    Get PDF
    The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support

    Quantum renormalization of high energy excitations in the 2D Heisenberg antiferromagnet

    Full text link
    We find using Monte Carlo simulations of the spin-1/2 2D square lattice nearest neighbour quantum Heisenberg antiferromagnet that the high energy peak locations at (pi,0) and (pi/2,pi/2) differ by about 6%, (pi/2,pi/2) being the highest. This is a deviation from linear spin wave theory which predicts equal magnon energies at these points.Comment: Final version, Latex using iopart & epsfi

    Skyrme and Wigner crystals in graphene

    Full text link
    At low-energy, the band structure of graphene can be approximated by two degenerate valleys (K,K)(K,K^{\prime}) about which the electronic spectra of the valence and conduction bands have linear dispersion relations. An electronic state in this band spectrum is a linear superposition of states from the AA and BB sublattices of the honeycomb lattice of graphene. In a quantizing magnetic field, the band spectrum is split into Landau levels with level N=0 having zero weight on the B(A)B(A) sublattice for the % K(K^{\prime}) valley. Treating the valley index as a pseudospin and assuming the real spins to be fully polarized, we compute the energy of Wigner and Skyrme crystals in the Hartree-Fock approximation. We show that Skyrme crystals have lower energy than Wigner crystals \textit{i.e.} crystals with no pseudospin texture in some range of filling factor ν\nu around integer fillings. The collective mode spectrum of the valley-skyrmion crystal has three linearly-dispersing Goldstone modes in addition to the usual phonon mode while a Wigner crystal has only one extra Goldstone mode with a quadratic dispersion. We comment on how these modes should be affected by disorder and how, in principle, a microwave absorption experiment could distinguish between Wigner and Skyrme crystals.Comment: 14 pages with 11 figure

    A unified projection formalism for the Al-Pd-Mn quasicrystal Xi-approximants and their metadislocations

    Full text link
    The approximants xi, xi' and xi'_n of the quasicrystal Al-Mn-Pd display most interesting plastic properties as for example phason-induced deformation processes (Klein, H., Audier, M., Boudard, M., de Boissieu, M., Beraha, L., and Duneau, M., 1996, Phil. Mag. A, 73, 309.) or metadislocations (Klein, H., Feuerbacher, M., Schall, P., and Urban, K., 1999, Phys. Rev. Lett., 82, 3468.). Here we demonstrate that the phases and their deformed or defected states can be described by a simple projection formalism in three-dimensional space - not as usual in four to six dimensions. With the method we can interpret microstructures observed with electron microscopy as phasonic phase boundaries. Furthermore we determine the metadislocations of lowest energy and relate them uniquely to experimentally observed ones. Since moving metadislocations in the xi'-phase can create new phason-planes, we suggest a dislocation induced phase transition from xi' to xi'_n. The methods developed in this paper can as well be used for various other complex metallic alloys.Comment: 25 pages, 12 figure

    Single-, Dual- and Triple-band Frequency Reconfigurable Antenna

    Get PDF
    The paper presents a frequency reconfigurable slot dipole antenna. The antenna is capable of being switched between single-band, dual-band or triple-band operation. The antenna incorporates three pairs of pin-diodes which are located within the dipole arms. The antenna was designed to operate at 2.4 GHz, 3.5 GHz and 5.2 GHz using the aid of CST Microwave Studio. The average measured gains are 1.54, 2.92 and 1.89 dBi for low, mid and high band respectively. A prototype was then constructed in order to verify the performance of the device. A good level of agreement was observed between simulation and measurement

    Interplay between superconductivity and itinerant magnetism in underdoped Ba1x_{1-x}Kx_xFe2_2As2_2 (x=x= 0.2) probed by the response to controlled point-like disorder

    Full text link
    The response of superconductors to controlled introduction of point-like disorder is an important tool to probe their microscopic electronic collective behavior. In the case of iron-based superconductors (IBS), magnetic fluctuations presumably play an important role in inducing high temperature superconductivity. In some cases, these two seemingly incompatible orders coexist microscopically. Therefore, understanding how this unique coexistence state is affected by disorder can provide important information about the microscopic mechanisms involved. In one of the most studied pnictide family, hole-doped Ba1x_{1-x}Kx_xFe2_2As2_2 (BaK122), this coexistence occurs over a wide range of doping levels, 0.16~x\lesssim x \lesssim ~0.25. We used relativistic 2.5 MeV electrons to induce vacancy-interstitial (Frenkel) pairs that act as efficient point-like scattering centers. Upon increasing dose of irradiation, the superconducting transition temperature TcT_c decreases dramatically. In the absence of nodes in the order parameter this provides a strong support for a sign-changing s±s_{\pm} pairing. Simultaneously, in the normal state, there is a strong violation of the Matthiessen's rule and a decrease (surprisingly, at the same rate as TcT_c) of the magnetic transition temperature TsmT_{sm}, which indicates the itinerant nature of the long-range magnetic order. Comparison of the hole-doped BaK122 with electron-doped Ba(Fex_xCo1x_{1-x})2_2As2_2 (FeCo122) with similar TsmT_{sm}\sim110~K, x=x=0.02, reveals significant differences in the normal states, with no apparent Matthiessen's rule violation above TsmT_{sm} on the electron-doped side. We interpret these results in terms of the distinct impact of impurity scattering on the competing itinerant antiferromagnetic and s±s_{\pm} superconducting orders
    corecore