410 research outputs found

    STEREO and ACE observations of CIR particles

    Get PDF
    In the present solar minimum, corotating interaction regions (CIRs) produce frequent particle enhancements at 1 AU as observed at STEREO and ACE. As the two STEREO spacecraft move apart, differences in CIR time profiles observed at each spacecraft are becoming large. The timing differences are often roughly similar to the corotation time lag between the two spacecraft, however many of the features seen at Ahead and Behind require more than just a time shift. Perhaps transient disturbances in the solar wind affect connection to or transport from the shock, or temporal changes occur in the CIR shock itself. Additional timing differences of >1 day result from the different heliographic latitudes of the two STEREO spacecraf

    Galactic Cosmic Ray Origins and OB Associations: Evidence from SuperTIGER Observations of Elements 26_{26}Fe through 40_{40}Zr

    Get PDF
    We report abundances of elements from 26_{26}Fe to 40_{40}Zr in the cosmic radiation measured by the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument during 55 days of exposure on a long-duration balloon flight over Antarctica. These observations resolve elemental abundances in this charge range with single-element resolution and good statistics. These results support a model of cosmic-ray origin in which the source material consists of a mixture of 196+11^{+11}_{-6}\% material from massive stars and \sim81\% normal interstellar medium (ISM) material with solar system abundances. The results also show a preferential acceleration of refractory elements (found in interstellar dust grains) by a factor of \sim4 over volatile elements (found in interstellar gas) ordered by atomic mass (A). Both the refractory and volatile elements show a mass-dependent enhancement with similar slopes.Comment: 9 pages, 12 figures, 2 tables, accepted by Ap

    Ultra-heavy cosmic-ray science--Are r-process nuclei in the cosmic rays produced in supernovae or binary neutron star mergers?

    Full text link
    The recent detection of 60Fe in the cosmic rays provides conclusive evidence that there is a recently synthesized component (few MY) in the GCRs (Binns et al. 2016). In addition, these nuclei must have been synthesized and accelerated in supernovae near the solar system, probably in the Sco-Cen OB association subgroups, which are about 100 pc distant from the Sun. Recent theoretical work on the production of r-process nuclei appears to indicate that it is difficult for SNe to produce the solar system abundances relative to iron of r-process elements with high atomic number (Z), including the actinides (Th, U, Np, Pu, and Cm). Instead, it is believed by many that the heaviest r-process nuclei, or perhaps even all r-process nuclei, are produced in binary neutron star mergers. Since we now know that there is at least a component of the GCRs that has been recently synthesized and accelerated, models of r-process production by SNe and BNSM can be tested by measuring the relative abundances of these ultra-heavy r-process nuclei, and especially the actinides, since they are radioactive and provide clocks that give the time interval from nucleosynthesis to detection at Earth. Since BNSM are believed to be much less frequent in our galaxy than SNe (roughly 1000 times less frequent, the ratios of the actinides, each with their own half-life, will enable a clear determination of whether the heaviest r-process nuclei are synthesized in SNe or in BNSM. In addition, the r-process nuclei for the charge range from 34 to 82 can be used to constrain models of r-process production in BNSM and SNe. Thus, GCRs become a multi-messenger component in the study of BNSM and SNe.Comment: Astro2020 Science White Pape

    The Longitudinal Distribution of Solar Energetic Particles

    Get PDF
    Using observations from the High Energy Telescopes (HETs) on STEREO A and B and similar observations from SoHO, near-Earth, we have identified ~250 individual solar energetic particle events that include >14 MeV protons since the beginning of the STEREO mission [1]. Between the end of December 2009, when the STEREO A and B spacecraft were, respectively, ahead and behind Earth by ~ 65° in ecliptic longitude, and the end of December 2013, 43 different events were clearly detected at all three locations. The observed intensities of such an event are usually assumed to be Gaussian distributed as a function of the longitudes of the Parker Spiral footpoints at the Sun for each observer. This neglects the fact that the interplanetary magnetic field may have large deviations from Parker Spirals, e.g. due to coronal mass ejections from prior events. Nonetheless, we have fit Gaussians to the peak intensities observed simultaneously at three spacecraft for all 43 events. The Gaussian peak intensity is poorly correlated with the corresponding CME speed and the FWHM is uncorrelated with the CME speed. Surprisingly, however, there appear to be distinctly non-random variations of the FWHM values from event to event

    Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe

    Get PDF
    A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS⊙IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ~0.3 particles (cm² sr s MeV)⁻¹, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle increases and small brightness surges in the extreme-ultraviolet observed by the Solar TErrestrial RElations Observatory, which were also accompanied by type III radio emission seen by the Electromagnetic Fields Investigation on PSP, indicates that the source of this event was an active region nearly 80° east of the nominal PSP magnetic footpoint. This suggests that the field lines expanded over a wide longitudinal range between the active region in the photosphere and the corona

    Measurement of 0.25-3.2 GeV antiprotons in the cosmic radiation

    Get PDF
    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba, Canada on 16–17 July 1992. Using velocity and magnetic rigidity to determine mass, we have directly measured the abundances of cosmic ray antiprotons and protons in the energy range from 0.25 to 3.2 GeV. Both the absolute flux of antiprotons and the antiproton/proton ratio are consistent with recent theoretical work in which antiprotons are produced as secondary products of cosmic ray interactions with the interstellar medium. This consistency implies a lower limit to the antiproton lifetime of ∼10 to the 7th yr

    Identifying Galactic Cosmic Ray Origins With Super-TIGER

    Get PDF
    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 < or equal Z < or equal 42 with individual-element resolution and high statistical precision, and make exploratory measurements through Z = 60. It will also measure with high statistical accuracy the energy spectra of the more abundant elements in the interval 14 < or equal Z < or equal 30 at energies 0.8 < or equal E < or equal 10 GeV/nucleon. These spectra will give a sensitive test of the hypothesis that microquasars or other sources could superpose spectral features on the otherwise smooth energy spectra previously measured with less statistical accuracy. Super-TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins

    Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons

    Full text link
    We present a new measurement of air shower muons made during atmospheric ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+ / mu- is presented as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and 960 g/cm^2. We compare our measurements with other recent data and with Monte Carlo calculations of the same type as those used in predicting atmospheric neutrino fluxes. We find that our measured mu- fluxes are smaller than the predictions by as much as 70% at shallow atmospheric depths, by about 20% at the depth of shower maximum, and are in good agreement with the predictions at greater depths. We explore the consequences of this on the question of atmospheric neutrino production.Comment: 11 pages, 8 figures, to appear in Phys. Rev. D (2000

    Energetic Particle Increases Associated with Stream Interaction Regions

    Get PDF
    The Parker Solar Probe was launched on 2018 August 12 and completed its second orbit on 2019 June 19 with perihelion of 35.7 solar radii. During this time, the Energetic Particle Instrument-Hi (EPI-Hi, one of the two energetic particle instruments comprising the Integrated Science Investigation of the Sun, IS⊙IS) measured seven proton intensity increases associated with stream interaction regions (SIRs), two of which appear to be occurring in the same region corotating with the Sun. The events are relatively weak, with observed proton spectra extending to only a few MeV and lasting for a few days. The proton spectra are best characterized by power laws with indices ranging from −4.3 to −6.5, generally softer than events associated with SIRs observed at 1 au and beyond. Helium spectra were also obtained with similar indices, allowing He/H abundance ratios to be calculated for each event. We find values of 0.016–0.031, which are consistent with ratios obtained previously for corotating interaction region events with fast solar wind ≤ 600 km s⁻¹. Using the observed solar wind data combined with solar wind simulations, we study the solar wind structures associated with these events and identify additional spacecraft near 1 au appropriately positioned to observe the same structures after some corotation. Examination of the energetic particle observations from these spacecraft yields two events that may correspond to the energetic particle increases seen by EPI-Hi earlier

    Extended Energy Spectrum Measurement of Elements With the Cosmic Ray Isotope Spectrometer (CRIS)

    Get PDF
    We describe a multiple dE/dx technique used to identify particles that penetrate through the bottom of the CRIS instrument, significantly extending the measured energy ranges for major elements beyond that for stopping particles. In preliminary analysis, the upper energy limit for oxygen has been extended from ∼240 MeV/nuc for stopping particles to ∼410 MeV/nuc for penetrating particles, and the upper energy limit for iron has been extended from ∼470 MeV/nuc to ∼670 MeV/nuc. We report new element intensities in these extended energy ranges, and compare them with previously reported intensities and with spectra derived using cosmic ray transport and solar modulation models
    corecore