25,827 research outputs found

    Probing the evolving massive star population in Orion with kinematic and radioactive tracers

    Get PDF
    We assemble a census of the most massive stars in Orion, then use stellar isochrones to estimate their masses and ages, and use these results to establish the stellar content of Orion's individual OB associations. From this, our new population synthesis code is utilized to derive the history of the emission of UV radiation and kinetic energy of the material ejected by the massive stars, and also follow the ejection of the long-lived radioactive isotopes 26Al and 60Fe. In order to estimate the precision of our method, we compare and contrast three distinct representations of the massive stars. We compare the expected outputs with observations of 26Al gamma-ray signal and the extent of the Eridanus cavity. We find an integrated kinetic energy emitted by the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent with the energy thought to be required to create the Eridanus superbubble. We also find good agreement between our model and the observed 26Al signal, estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion region. Our population synthesis approach is demonstrated for the Orion region to reproduce three different kinds of observable outputs from massive stars in a consistent manner: Kinetic energy as manifested in ISM excavation, ionization as manifested in free-free emission, and nucleosynthesis ejecta as manifested in radioactivity gamma-rays. The good match between our model and the observables does not argue for considerable modifications of mass loss. If clumping effects turn out to be strong, other processes would need to be identified to compensate for their impact on massive-star outputs. Our population synthesis analysis jointly treats kinematic output and the return of radioactive isotopes, which proves a powerful extension of the methodology that constrains feedback from massive stars.Comment: Accepted for publication in A&A, 10 page

    Study of the system of middle atmosphere-ionosphere using remote-sensing data

    Get PDF
    In the present investigation, the methods of statistical spectral analysis are employed for a study of the quasi-periodic changes of state parameters of the middle atmosphere and the ionosphere, taking into account oscillations with periods of several days. The considered oscillations are typical for planetary waves. The theory and empirical findings regarding transient planetary waves are utilized as a basis for the concepts employed in the data analysis and for the interpretation of the results. The results of the investigation show a presence of coherent variations in the time series of radiation density measurements and other state parameters for the middle atmosphere and the ionosphere. The existence of presumably dynamic coupling processes can be recognized in oscillations with periods of about 16 or 5 days

    The Production of Ti44 and Co60 in Supernova

    Full text link
    The production of the radioactive isotopes 44^{44}Ti and 60^{60}Co in all types of supernovae is examined and compared to observational constraints including Galactic γ\gamma--ray surveys, measurements of the diffuse 511 keV radiation, γ\gamma--ray observations of Cas A, the late time light curve of SN 1987A, and isotopic anomalies found in silicon carbide grains in meteorites. The (revised) line flux from 44^{44}Ti decay in the Cas A supernova remnant reported by COMPTEL on the Compton Gamma-Ray Observatory is near the upper bound expected from our models. The necessary concurrent ejection of 56^{56}Ni would also imply that Cas A was a brighter supernova than previously thought unless extinction in the intervening matter was very large. Thus, if confirmed, the reported amount of 44^{44}Ti in Cas A provides very interesting constraints on both the supernova environment and its mechanism. The abundances of 44^{44}Ti and 60^{60}Co ejected by Type II supernovae are such that gamma-radiation from 44^{44}Ti decay SN 1987A could be detected by a future generation of gamma-ray telescopes and that the decay of 60^{60}Co might provide an interesting contribution to the late time light curve of SN 1987A and other Type II supernovae. To produce the solar 44^{44}Ca abundance and satisfy all the observational constraints, nature may prefer at least the occasional explosion of sub-Chandrasekhar mass white dwarfs as Type Ia supernovae. Depending on the escape fraction of positrons due to 56^{56}Co made in all kinds of Type Ia supernovae, a significant fraction of the steady state diffuse 511 keV emission may arise from the annihilation of positrons produced during the decay of 44^{44}Ti to 44^{44}Ca. The Ca and Ti isotopic anomalies in pre-solar grains confirm the production of 44^{44}Ti in supernovae and thatComment: 27 pages including 7 figures. uuencoded, compressed, postscript. in press Ap

    Quantum annealing with antiferromagnetic fluctuations

    Full text link
    We introduce antiferromagnetic quantum fluctuations into quantum annealing in addition to the conventional transverse-field term. We apply this method to the infinite-range ferromagnetic p-spin model, for which the conventional quantum annealing has been shown to have difficulties to find the ground state efficiently due to a first-order transition. We study the phase diagram of this system both analytically and numerically. Using the static approximation, we find that there exists a quantum path to reach the final ground state from the trivial initial state that avoids first-order transitions for intermediate values of p. We also study numerically the energy gap between the ground state and the first excited state and find evidence for intermediate values of p that the time complexity scales polynomially with the system size at a second-order transition point along the quantum path that avoids first-order transitions. These results suggest that quantum annealing would be able to solve this problem with intermediate values of p efficiently in contrast to the case with only simple transverse-field fluctuations.Comment: 19 pages, 11 figures; Added references; To be published in Physical Review

    Phase transitions in diluted negative-weight percolation models

    Full text link
    We investigate the geometric properties of loops on two-dimensional lattice graphs, where edge weights are drawn from a distribution that allows for positive and negative weights. We are interested in the appearance of spanning loops of total negative weight. The resulting percolation problem is fundamentally different from conventional percolation, as we have seen in a previous study of this model for the undiluted case. Here, we investigate how the percolation transition is affected by additional dilution. We consider two types of dilution: either a certain fraction of edges exhibit zero weight, or a fraction of edges is even absent. We study these systems numerically using exact combinatorial optimization techniques based on suitable transformations of the graphs and applying matching algorithms. We perform a finite-size scaling analysis to obtain the phase diagram and determine the critical properties of the phase boundary. We find that the first type of dilution does not change the universality class compared to the undiluted case whereas the second type of dilution leads to a change of the universality class.Comment: 8 pages, 7 figure
    corecore