2,689 research outputs found

    Analog table look-up device identifies unknown terrain

    Get PDF
    Table provides a probability map defining unknown terrain in terms of known terrain inputs. Device consists of analog transformation network and flying spot scanner. Information is useful to manufacturers and users of remote sensing equipment and applies to automated quality control

    A quantitative assessment of resampling errors

    Get PDF
    Applications associated with digital geographic imagery are subject to great diversity in required cell size, cartographic projection, etc. The need for resampling remote sensing scaner data is evident in all but the most undemanding cases. It is shown that proper resampling of such data is dependent in important ways on the detailed knowledge of the original scanner's effective point-spread function and to the desired point-spread function of resampled data. When both of these are known, it is relatively straightforward to compute the resampling coefficients which do the best job of approximating the shape and position of the synthesized point-spread function. The resulting synthesized psf are compared with an ideal psf located at various interpixel positions and any differences observed as errors

    Conical scan impact study. Volume 2: Small local user data processing facility

    Get PDF
    The impact of a conical scan versus a linear scan multispectral scanner (MSS) instrument on a small local-user data processing facility was studied. User data requirements were examined to determine the unique system rquirements for a low cost ground system (LCGS) compatible with the Earth Observatory Satellite (EOS) system. Candidate concepts were defined for the LCGS and preliminary designs were developed for selected concepts. The impact of a conical scan MSS versus a linear scan MSS was evaluated for the selected concepts. It was concluded that there are valid user requirements for the LCGS and, as a result of these requirements, the impact of the conical scanner is minimal, although some new hardware development for the LCGS is necessary to handle conical scan data

    Elastic precursor of the transformation from glycolipid-nanotube to -vesicle

    Full text link
    By the combination of optical tweezer manipulation and digital video microscopy, the flexural rigidity of single glycolipid "nano" tubes has been measured below the transition temperature at which the lipid tubules are transformed into vesicles. Consequently, we have found a clear reduction of the rigidity obviously before the transition as temperature increasing. Further experiments of infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) have suggested a microscopic change of the tube walls, synchronizing with the precursory softening of the nanotubes.Comment: 9 pages, 6 figure

    Finite Projective Spaces, Geometric Spreads of Lines and Multi-Qubits

    Full text link
    Given a (2N - 1)-dimensional projective space over GF(2), PG(2N - 1, 2), and its geometric spread of lines, there exists a remarkable mapping of this space onto PG(N - 1, 4) where the lines of the spread correspond to the points and subspaces spanned by pairs of lines to the lines of PG(N - 1, 4). Under such mapping, a non-degenerate quadric surface of the former space has for its image a non-singular Hermitian variety in the latter space, this quadric being {\it hyperbolic} or {\it elliptic} in dependence on N being {\it even} or {\it odd}, respectively. We employ this property to show that generalized Pauli groups of N-qubits also form two distinct families according to the parity of N and to put the role of symmetric operators into a new perspective. The N=4 case is taken to illustrate the issue.Comment: 3 pages, no figures/tables; V2 - short introductory paragraph added; V3 - to appear in Int. J. Mod. Phys.

    Novel food-safe spin-lattice relaxation time calibration samples for use in magnetic resonance sensor development

    Get PDF
    Magnetic Resonance (MR) sensors are an area of increasing interest for the measurement and monitoring of material properties. There are two relaxation times associated with samples that can be measured with MR sensors: The spin-lattice and spin-spin relaxations. When developing new sensors, it is desirable to have a series of standards by which instruments can be assessed. The standard calibration materials available typically comprise different concentrations of Nickel Sulphate, which is carcinogenic and toxic. In this work, we report the use of solutions containing full fat milk powder as a safe and inexpensive material that shortens the longitudinal relaxation time of water over a wide range of values. We demonstrate that concentrations in distilled water from 5% W/V to 64% W/V give T1 values from 1.7 s down to 469 ms respectively in a 1.5T clinical MRI, while within an MR sensor, these times were from 1.6 s down to 431 ms. In addition, both systems have the same exponential coefficient (-0.022*concentration) that demonstrates the effectiveness of the NMR sensor in comparison to the clinical MRI

    Lens magnification by CL0024+1654 in the U and R band

    Get PDF
    [ABRIDGED] We estimate the total mass distribution of the galaxy cluster CL0024+1654 from the measured source depletion due to lens magnification in the R band. Within a radius of 0.54Mpc/h, a total projected mass of (8.1+/-3.2)*10^14 M_sol/h (EdS) is measured, which corresponds to a mass- to-light ratio of M/L(B)=470+/-180. We compute the luminosity function of CL0024+1654 in order to estimate contamination of the background source counts from cluster galaxies. Three different magnification-based reconstruction methods are employed using both local and non-local techniques. We have modified the standard single power-law slope number count theory to incorporate a break and applied this to our observations. Fitting analytical magnification profiles of different cluster models to the observed number counts, we find that the cluster is best described either by a NFW model with scale radius r_s=334+/-191 kpc/h and normalisation kappa_s=0.23+/-0.08 or a power-law profile with slope xi=0.61+/-0.11, central surface mass density kappa_0=1.52+/-0.20 and assuming a core radius of r_core=35 kpc/h. The NFW model predicts that the cumulative projected mass contained within a radius R scales as M(<R)=2.9*10^14*(R/1')^[1.3-0.5lg (R/1')] M_sol/h. Finally, we have exploited the fact that flux magnification effectively enables us to probe deeper than the physical limiting magnitude of our observations in searching for a change of slope in the U band number counts. We rule out both a total flattening of the counts with a break up to U_AB<=26.6 and a change of slope, reported by some studies, from dlog N/dm=0.4->0.15 up to U_AB<=26.4 with 95% confidence.Comment: 19 pages, 12 figures, submitted to A&A. New version includes more robust U band break analysis and contamination estimates, plus new plot

    Cassiopeia A: dust factory revealed via submillimetre polarimetry

    Full text link
    If Type-II supernovae - the evolutionary end points of short-lived, massive stars - produce a significant quantity of dust (>0.1 M_sun) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type-II supernovae. In this paper we present new data which show that the submm emission from Cas A is polarised at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarised submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarisation in this way and so we attribute the excess polarised submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarised and unpolarised dust emission in the north of the remnant, where there is no contamination from foreground molecular clouds. The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which, coupled with the brief timescale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where f_pol=2-7%), or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.Comment: In press at MNRAS, 10 pages, print in colou

    Combining high conductivity with complete optical transparency: A band-structure approach

    Get PDF
    A comparison of the structural, optical and electronic properties of the recently discovered transparent conducting oxide (TCO), nanoporous Ca12Al14O33, with those of the conventional TCO's (such as Sc-doped CdO) indicates that this material belongs conceptually to a new class of transparent conductors. For this class of materials, we formulate criteria for the successful combination of high electrical conductivity with complete transparency in the visible range. Our analysis suggests that this set of requirements can be met for a group of novel materials called electrides.Comment: 3 pages, 3 figures, submitted for publicatio

    On Invariant Notions of Segre Varieties in Binary Projective Spaces

    Full text link
    Invariant notions of a class of Segre varieties \Segrem(2) of PG(2^m - 1, 2) that are direct products of mm copies of PG(1, 2), mm being any positive integer, are established and studied. We first demonstrate that there exists a hyperbolic quadric that contains \Segrem(2) and is invariant under its projective stabiliser group \Stab{m}{2}. By embedding PG(2^m - 1, 2) into \PG(2^m - 1, 4), a basis of the latter space is constructed that is invariant under \Stab{m}{2} as well. Such a basis can be split into two subsets whose spans are either real or complex-conjugate subspaces according as mm is even or odd. In the latter case, these spans can, in addition, be viewed as indicator sets of a \Stab{m}{2}-invariant geometric spread of lines of PG(2^m - 1, 2). This spread is also related with a \Stab{m}{2}-invariant non-singular Hermitian variety. The case m=3m=3 is examined in detail to illustrate the theory. Here, the lines of the invariant spread are found to fall into four distinct orbits under \Stab{3}{2}, while the points of PG(7, 2) form five orbits.Comment: 18 pages, 1 figure; v2 - version accepted in Designs, Codes and Cryptograph
    corecore