1,064 research outputs found
Strain Modulated Superlattices in Graphene
Strain engineering of graphene takes advantage of one of the most dramatic
responses of Dirac electrons enabling their manipulation via strain-induced
pseudo-magnetic fields. Numerous theoretically proposed devices, such as
resonant cavities and valley filters, as well as novel phenomena, such as snake
states, could potentially be enabled via this effect. These proposals, however,
require strong, spatially oscillating magnetic fields while to date only the
generation and effects of pseudo-gauge fields which vary at a length scale much
larger than the magnetic length have been reported. Here we create a periodic
pseudo-gauge field profile using periodic strain that varies at the length
scale comparable to the magnetic length and study its effects on Dirac
electrons. A periodic strain profile is achieved by pulling on graphene with
extreme (>10%) strain and forming nanoscale ripples, akin to a plastic wrap
pulled taut at its edges. Combining scanning tunneling microscopy and atomistic
calculations, we find that spatially oscillating strain results in a new
quantization different from the familiar Landau quantization observed in
previous studies. We also find that graphene ripples are characterized by large
variations in carbon-carbon bond length, directly impacting the electronic
coupling between atoms, which within a single ripple can be as different as in
two different materials. The result is a single graphene sheet that effectively
acts as an electronic superlattice. Our results thus also establish a novel
approach to synthesize an effective 2D lateral heterostructure - by periodic
modulation of lattice strain.Comment: 18 pages, 5 figures and supplementary informatio
Cattle and Nematodes Under Global Change:Transmission Models as an Ally
Nematode infections are an important economic constraint to cattle farming. Future risk levels and transmission dynamics will be affected by changes in climate and farm management. The prospect of altered parasite epidemiology in combination with anthelmintic resistance requires the adaptation of current control approaches. Mathematical models that simulate disease dynamics under changing climate and farm management can help to guide the optimization of helminth control strategies. Recent efforts have increasingly employed such models to assess the impact of predicted climate scenarios on future infection pressure for gastrointestinal nematodes (GINs) in cattle, and to evaluate possible adaptive control measures. This review aims to consolidate progress in this field to facilitate further modeling and application
Identification of Electron Donor States in N-doped Carbon Nanotubes
Nitrogen doped carbon nanotubes have been synthesized using pyrolysis and
characterized by Scanning Tunneling Spectroscopy and transmission electron
microscopy. The doped nanotubes are all metallic and exhibit strong electron
donor states near the Fermi level. Using tight-binding and ab initio
calculations, we observe that pyridine-like N structures are responsible for
the metallic behavior and the prominent features near the Fermi level. These
electron rich structures are the first example of n-type nanotubes, which could
pave the way to real molecular hetero-junction devices.Comment: 5 pages, 4 figures, revtex, submitted to PR
Ab Initio Calculations of the Walls Shear Strength of Carbon Nanotubes
The dependence of the energy of interwall interaction in double-walled carbon
nanotubes (DWNT) on the relative position of walls has been calculated using
the density functional method. This dependence is used to evaluate forces that
are necessary for the relative telescopic motion of walls and to calculate the
shear strength of DWNT for the relative sliding of walls along the nanotube
axis and for their relative rotation about this axis. The possibility of
experimental verification of the obtained results is discussed.Comment: 4 pages, 1 figur
Corrigendum to "GLOWORM-PARA:a flexible framework to simulate the population dynamics of the parasitic phase of gastrointestinal nematodes infecting grazing livestock" [Int. J. Parasitol. 50 (2020) 133-144]
Gastrointestinal (GI) nematodes are a significant threat to the economic and environmental sustainability of keeping livestock, as adequate control becomes increasingly difficult due to the development of anthelmintic resistance (AR) in some systems and climate-driven changes to infection dynamics. To mitigate any negative impacts of climate on GI nematode epidemiology and slow AR development, there is a need to develop effective, targeted control strategies that minimise the unnecessary use of anthelmintic drugs and incorporate alternative strategies such as vaccination and evasive grazing. However, the impacts climate and GI nematode epidemiology may have on the optimal control strategy are generally not considered, due to lack of available evidence to drive recommendations. Parasite transmission models can support control strategy evaluation to target field trials, thus reducing the resources and lead-time required to develop evidence-based control recommendations incorporating climate stochasticity. GI nematode population dynamics arising from natural infections have been difficult to replicate and model applications have often focussed on the free-living stages. A flexible framework is presented for the parasitic phase of GI nematodes, GLOWORM-PARA, which complements an existing model of the free-living stages, GLOWORM-FL. Longitudinal parasitological data for two species that are of major economic importance in cattle, Ostertagia ostertagi and Cooperia oncophora, were obtained from seven cattle farms in Belgium for model validation. The framework replicated the observed seasonal dynamics of infection in cattle on these farms and overall, there was no evidence of systematic under- or over-prediction of faecal egg counts (FECs). However, the model under-predicted the FECs observed on one farm with very young calves, highlighting potential areas of uncertainty that may need further investigation if the model is to be applied to young livestock. The model could be used to drive further research into alternative parasite control strategies such as vaccine development and novel treatment approaches, and to understand GI nematode epidemiology under changing climate and host management
Effects of magnetic field and disorder on electronic properties of Carbon Nanotubes
Electronic properties of metallic and semiconducting carbon nanotubes are
investigated in presence of magnetic field perpendicular to the CN-axis, and
disorder introduced through energy site randomness. The magnetic field field is
shown to induce a metal-insulator transition (MIT) in absence of disorder, and
surprisingly disorder does not affect significantly the MIT. These results may
find confirmation through tunneling experimentsComment: 4 pages, 6 figures. Phys. Rev. B (in press
Persistent currents in carbon nanotubes based rings
Persistent currents in rings constructed from carbon nanotubes are
investigated theoretically. After studying the contribution of finite
temperature or quenched disorder on covalent rings, the complexity due to the
bundle packing is addressed. The case of interacting nanotori and
self-interacting coiled nanotubes are analyzed in details in relation with
experiments.Comment: 7 sections, 9 figure
Analysis of quantum conductance of carbon nanotube junctions by the effective mass approximation
The electron transport through the nanotube junctions which connect the
different metallic nanotubes by a pair of a pentagonal defect and a heptagonal
defect is investigated by Landauer's formula and the effective mass
approximation. From our previous calculations based on the tight binding model,
it has been known that the conductance is determined almost only by two
parameters,i.e., the energy in the unit of the onset energy of more than two
channels and the ratio of the radii of the two nanotubes. The conductance is
calculated again by the effective mass theory in this paper and a simple
analytical form of the conductance is obtained considering a special boundary
conditions of the envelop wavefunctions. The two scaling parameters appear
naturally in this treatment. The results by this formula coincide fairly well
with those of the tight binding model.
The physical origin of the scaling law is clarified by this approach.Comment: RevTe
Band structures of periodic carbon nanotube junctions and their symmetries analyzed by the effective mass approximation
The band structures of the periodic nanotube junctions are investigated by
the effective mass theory and the tight binding model.
The periodic junctions are constructed by introducing pairs of a pentagonal
defect and a heptagonal defect periodically in the carbon nanotube.
We treat the periodic junctions whose unit cell is composed by two kinds of
metallic nanotubes with almost same radii, the ratio of which is between 0.7
and 1 .
The discussed energy region is near the undoped Fermi level where the channel
number is kept to two, so there are two bands.
The energy bands are expressed with closed analytical forms by the effective
mass theory with some assumptions, and they coincide well with the numerical
results by the tight binding model. Differences between the two methods are
also discussed. Origin of correspondence between the band structures and the
phason pattern discussed in Phys. Rev. B {\bf 53}, 2114, is clarified. The
width of the gap and the band are in inverse proportion to the length of the
unit cell, which is the sum of the lengths measured along the tube axis in each
tube part and along 'radial' direction in the junction part. The degeneracy and
repulsion between the two bands are determined only from symmetries.Comment: RevTeX, gif fil
- …