23,105 research outputs found

    A sensitive infrared imaging up converter and spatial coherence of atmospheric propagation

    Get PDF
    An infrared imaging technique based on the nonlinear interaction known as upconversion was used to obtain images of several astronomical objects in the 10 micrometer spectral region, and to demonstrate quantitatively the sharper images allowed for wavelengths beyond the visible region. The deleterious effects of atmospheric inhomogeneities on telescope resolution were studied in the infrared region using the technique developed. The low quantum efficiency of the device employed severely limited its usefulness as an astronomical detector

    A simple method for estimation of coagulation efficiency in mixed aerosols

    Get PDF
    Aerosols of KBr and AgNO3 were mixed, exposed to light in a glass tube and collected in the dark. About 15% of the collected material was reduced to silver upon development. Thus, two aerosols of particles that react to form a photo-reducible compound can be used to measure coagulation efficiency

    True Airspeed Measurement by Ionization-Tracer Technique

    Get PDF
    Ion bundles produced in a pulse-excited corona discharge are used as tracers with a radar-like pulse transit-time measuring instrument in order to provide a measurement of airspeed that is independent of all variables except time and distance. The resulting instrumentation need not project into the air stream and, therefore, will not cause any interference in supersonic flow. The instrument was tested at Mach numbers ranging from 0.3 to 3.8. Use of the proper instrumentation and technique results in accuracy of the order of 1 percent

    Mixed perturbative expansion: the validity of a model for the cascading

    Get PDF
    A new type of perturbative expansion is built in order to give a rigorous derivation and to clarify the range of validity of some commonly used model equations. This model describes the evolution of the modulation of two short and localized pulses, fundamental and second harmonic, propagating together in a bulk uniaxial crystal with non-vanishing second order susceptibility χ(2)\chi^(2) and interacting through the nonlinear effect known as ``cascading'' in nonlinear optics. The perturbative method mixes a multi-scale expansion with a power series expansion of the susceptibility, and must be carefully adapted to the physical situation. It allows the determination of the physical conditions under which the model is valid: the order of magnitude of the walk-off, phase-mismatch,and anisotropy must have determined values.Comment: arxiv version is already officia

    SU(3) Spin-Orbit Coupling in Systems of Ultracold Atoms

    Full text link
    Motivated by the recent experimental success in realizing synthetic spin-orbit coupling in ultracold atomic systems, we consider N-component atoms coupled to a non-Abelian SU(N) gauge field. More specifically, we focus on the case, referred to here as "SU(3) spin-orbit-coupling," where the internal states of three-component atoms are coupled to their momenta via a matrix structure that involves the Gell-Mann matrices (in contrast to the Pauli matrices in conventional SU(2) spin-orbit-coupled systems). It is shown that the SU(3) spin-orbit-coupling gives rise to qualitatively different phenomena and in particular we find that even a homogeneous SU(3) field on a simple square lattice enables a topologically non-trivial state to exist, while such SU(2) systems always have trivial topology. In deriving this result, we first establish an exact equivalence between the Hofstadter model with a 1/N Abelian flux per plaquette and a homogeneous SU(N) non-Abelian model. The former is known to have a topological spectrum for N>2, which is thus inherited by the latter. It is explicitly verified by an exact calculation for N=3, where we develop and use a new algebraic method to calculate topological indices in the SU(3) case. Finally, we consider a strip geometry and establish the existence of three gapless edge states -- the hallmark feature of such an SU(3) topological insulator.Comment: 4.2 pages, 1 figur

    Big Bang Nucleosynthesis with Long Lived Charged Massive Particles

    Get PDF
    We consider Big Bang Nucleosynthesis (BBN) with long lived charged massive particles. Before decaying, the long lived charged particle recombines with a light element to form a bound state like a hydrogen atom. This effect modifies the nuclear reaction rates during the BBN epoch through the modifications of the Coulomb field and the kinematics of the captured light elements, which can change the light element abundances. It is possible that the heavier nuclei abundances such as 7^7Li and 7^7Be decrease sizably, while the ratios YpY_p, D/H, and 3^3He/H remain unchanged. This may solve the current discrepancy between the BBN prediction and the observed abundance of 7^7Li. If future collider experiments found signals of a long-lived charged particle inside the detector, the information of its lifetime and decay properties could provide insights to understand not only the particle physics models but also the phenomena in the early universe in turn.Comment: 20 pages, 6 figures, published version in Physical Review

    Interior Point Decoding for Linear Vector Channels

    Full text link
    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem. The proposed decoding algorithm is based on a numerical optimization technique so called interior point method with barrier function. Approximate variations of the gradient descent and the Newton methods are used to solve the convex optimization problem. In a decoding process of the proposed algorithm, a search point always lies in the fundamental polytope defined based on a low-density parity-check matrix. Compared with a convectional joint message passing decoder, the proposed decoding algorithm achieves better BER performance with less complexity in the case of partial response channels in many cases.Comment: 18 pages, 17 figures, The paper has been submitted to IEEE Transaction on Information Theor

    Optically mediated nonlinear quantum optomechanics

    Full text link
    We consider theoretically the optomechanical interaction of several mechanical modes with a single quantized cavity field mode for linear and quadratic coupling. We focus specifically on situations where the optical dissipation is the dominant source of damping, in which case the optical field can be adiabatically eliminated, resulting in effective multimode interactions between the mechanical modes. In the case of linear coupling, the coherent contribution to the interaction can be exploited e.g. in quantum state swapping protocols, while the incoherent part leads to significant modifications of cold damping or amplification from the single-mode situation. Quadratic coupling can result in a wealth of possible effective interactions including the analogs of second-harmonic generation and four-wave mixing in nonlinear optics, with specific forms depending sensitively on the sign of the coupling. The cavity-mediated mechanical interaction of two modes is investigated in two limiting cases, the resolved sideband and the Doppler regime. As an illustrative application of the formal analysis we discuss in some detail a two-mode system where a Bose-Einstein condensate is optomechanically linearly coupled to the moving end mirror of a Fabry-P\'erot cavity.Comment: 11 pages, 8 figure

    Polarization squeezing of light by single passage through an atomic vapor

    Full text link
    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant 87^{87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous variables quantum protocols was observed. The extreme simplicity of the setup, based on standard polarization components, makes it particularly convenient for quantum information applications.Comment: Revised version. Minor changes. four pages, three figure
    corecore