15,492 research outputs found

    Low Temperature Kinetics as a Probe of Protein Structure and Dynamics

    Get PDF
    The recombination kinetics of flash-photolyzed carbon monoxy heme proteins has been studied as a function of temperature over the range of 2 K-350 K. Low temperature kinetics (< 200 K) reveal that internal activation energy barriers to recombination (a) control the room temperature kinetics, (b) are of a distributed nature, forming an ensemble of activation energies, (c) are specific to the protein studied and are sensitive to the presence of substrates bound to the protein. Cytochrome P450 from camphor induced Pseudomonas putida reveals low temperature kinetics which are highly dependent on the presence or absence of the camphor substrate

    Control of large space structures

    Get PDF
    The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only

    Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    Full text link
    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form sequentially outward from the groove edge, with the first one forming after 50 ps. A 1-D analytical model of electron heating and surface plasmon polariton (SPP) excitation induced by the interaction of incoming laser pulse with the groove edge qualitatively explains the time-evloution of LIPSS formation.Comment: 4 pages, 5 figure

    ANS hard X-ray experiment development program

    Get PDF
    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included

    Experiments on Visual Acuity and the Visibility of Markings on the Ground in Long-duration Earth-Orbital Space Flight

    Get PDF
    Visual acuity and visibility of markings on ground in long duration earth orbital space fligh

    Reply to ``Comment on `Insulating Behavior of λ\lambda-DNA on the Micron Scale' "

    Full text link
    In our experiment, we found that the resistance of vacuum-dried λ\lambda-DNA exceeds 1014Ω10^{14} \Omega at 295 K. Bechhoefer and Sen have raised a number of objections to our conclusion. We provide counter arguments to support our original conclusion.Comment: 1 page reply to comment, 1 figur

    Near-infrared optical properties and proposed phase-change usefulness of transition metal disulfides

    Full text link
    The development of photonic integrated circuits would benefit from a wider selection of materials that can strongly-control near-infrared (NIR) light. Transition metal dichalcogenides (TMDs) have been explored extensively for visible spectrum opto-electronics, but the NIR properties of these layered materials have been less-studied. The measurement of optical constants is the foremost step to qualify TMDs for use in NIR photonics. Here we measure the complex optical constants for select sulfide TMDs (bulk crystals of MoS2, TiS2 and ZrS2) via spectroscopic ellipsometry in the visible-to-NIR range. Through Mueller matrix measurements and generalized ellipsometry, we explicitly measure the direction of the ordinary optical axis. We support our measurements with density functional theory (DFT) calculations, which agree with our measurements and predict giant birefringence. We further propose that TMDs could find use as photonic phase-change materials, by designing alloys that are thermodynamically adjacent to phase boundaries between competing crystal structures, to realize martensitic (i.e. displacive, order-order) switching.Comment: supplementary at end of document. 6 main figure
    corecore