4,167 research outputs found

    A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    Get PDF
    We report on a measurement of the angular spectrum of the CMB between l≈100l\approx 100 and l≈400l\approx 400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with δTl≈85 μ\delta T_l \approx 85~\muK at l≈200l\approx 200 and a fall at l>300l>300, thereby localizing the peak near l≈200l\approx 200; and 2) that the anisotropy at l≈200l\approx 200 has the spectrum of the CMB.Comment: 4 pages, 2 figures. Revised version; includes Ned Wright's postscript fix. Accepted by ApJL. Website at http://physics.princeton.edu/~cmb

    The EBEX Experiment

    Full text link
    EBEX is a balloon-borne polarimeter designed to measure the intensity and polarization of the cosmic microwave background radiation. The measurements would probe the inflationary epoch that took place shortly after the big bang and would significantly improve constraints on the values of several cosmological parameters. EBEX is unique in its broad frequency coverage and in its ability to provide critical information about the level of polarized Galactic foregrounds which will be necessary for all future CMB polarization experiments. EBEX consists of a 1.5 m Dragone-type telescope that provides a resolution of less than 8 arcminutes over four focal planes each of 4 degree diffraction limited field of view at frequencies up to 450 GHz. The experiment is designed to accommodate 330 transition edge bolometric detectors per focal plane, for a total of up to 1320 detectors. EBEX will operate with frequency bands centered at 150, 250, 350, and 450 GHz. Polarimetry is achieved with a rotating achromatic half-wave plate. EBEX is currently in the design and construction phase, and first light is scheduled for 2008.Comment: 13 pages, 10 figures. Figure 1 is changed from the one which appeared in the Proceedings of the SPI

    Implications of a High Angular Resolution Image of the Sunyaev-Zel'dovich Effect in RXJ1347-1145

    Full text link
    The most X-ray luminous cluster known, RXJ1347-1145 (z=0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel'dovich Effect (SZE) at 90 GHz (3.3 mm) in RXJ1347-1145 at 10" resolution with the 64-pixel MUSTANG bolometer array on the Green Bank Telescope (GBT), confirming a previously reported strong, localized enhancement of the SZE 20" to the South-East of the center of X-ray emission. This enhancement of the SZE has been interpreted as shock-heated (> 20 keV) gas caused by an ongoing major (low mass-ratio) merger event. Our data support this interpretation. We also detect a pronounced asymmetry in the projected cluster pressure profile, with the pressure just east of the cluster core ~1.6 times higher than just to the west. This is the highest resolution image of the SZE made to date.Comment: 9 pages, 7 figures; accepted for publication in The Astrophysical Journa

    Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel'dovich Effect Observations with MUSTANG and Bolocam I: Joint Analysis Technique

    Get PDF
    We present a technique to constrain galaxy cluster pressure profiles by jointly fitting Sunyaev-Zel'dovich effect (SZE) data obtained with MUSTANG and Bolocam for the clusters Abell 1835 and MACS0647. Bolocam and MUSTANG probe different angular scales and are thus highly complementary. We find that the addition of the high resolution MUSTANG data can improve constraints on pressure profile parameters relative to those derived solely from Bolocam. In Abell 1835 and MACS0647, we find gNFW inner slopes of γ=0.36−0.21+0.33\gamma = 0.36_{-0.21}^{+0.33} and γ=0.38−0.25+0.20\gamma = 0.38_{-0.25}^{+0.20}, respectively when α\alpha and β\beta are constrained to 0.86 and 4.67 respectively. The fitted SZE pressure profiles are in good agreement with X-ray derived pressure profiles.Comment: 12 pages, 12 figures. Submitted to Ap

    Determination of the branching ratios Γ(KL→3π0)/Γ(KL→π+π−π0)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) and Γ(KL→3π0)/Γ(KL→πeν)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu )

    Get PDF
    Improved branching ratios were measured for the KL→3π0K_L \to 3 \pi^0 decay in a neutral beam at the CERN SPS with the NA31 detector: Γ(KL→3π0)/Γ(KL→π+π−π0)=1.611±0.037\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) = 1.611 \pm 0.037 and Γ(KL→3π0)/Γ(KL→πeν)=0.545±0.010\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu ) = 0.545 \pm 0.010. From the first number an upper limit for ΔI=5/2\Delta I =5/2 and ΔI=7/2\Delta I = 7/2 transitions in neutral kaon decay is derived. Using older results for the Ke3/Kμ\mu 3 fraction, the 3π0\pi^0 branching ratio is found to be Γ(KL→3π0)/Γtot=(0.211±0.003)\Gamma (K_L \to 3 \pi^0 )/ \Gamma_{tot} = (0.211 \pm 0.003), about a factor three more precise than from previous experiments
    • …
    corecore