314 research outputs found

    Compatibility testing of candidate protective barrier coatings and performance testing of filter vent materials Final report

    Get PDF
    Flame sprayed ceramic aluminum and zinc coatings for corrosion prevention of tantalum containment vessel in nuclear reacto

    Co-ordination of boron in sillimanite

    Get PDF
    Ion-Microprobe analyses of six sillimanites associated with kornerupine show that the sillimanite can incorporate from 0.035 to 0.43 wt. % B_2O_3 (Grew and Hinthorne, 1983). Boron appears to substitute for silicon concomitantly with Mg substitution for Al such that the atomic Mg/B ratio is close to 0.5. This substitution results in a deficiency of cationic charge, which Grew and Hinthorne (1983) attributed to a submicroscopic rearrangement of the sillimanite structure involving loss of oxygen. A possible substitution scheme is 2(B + xMg) → 2(Si + xAl) + (1 + x)O, where x ≃ 0.5. In the present study, we have addressed the question of co-ordination of boron in sillimanite. As boron can occur in trigonal or tetrahedral coordination with oxygen, there is no compelling reason that B substitution for Si implies tetrahedral co-ordination for B

    Preliminary data for the 20 May 1974, simultaneous evaluation of remote sensors experiment

    Get PDF
    Several remote sensors were simultaneously used to collect data over the tidal James River from Hopewell to Norfolk, Virginia. Sensors evaluated included the Multichannel-Ocean Color Sensor, multispectral scanners, and multispectral photography. Ground truth measurements and remotely sensed data are given. Preliminary analysis indicates that suspended sediment and concentrated industrial effluent are observable from all sensors

    Chevkinite-Group Minerals from Granulite-Facies Metamorphic Rocks and Associated Pegmatites of East Antarctica and South India

    Get PDF
    Electron microprobe data are presented for chevkinite-group minerals from granulite-facies rocks and associated pegmatities of the Napier Complex and Mawson Station charnockite in East Antarctica and from the Eastern Ghats, South India. Their compositions conform to the general formula for this group, viz. A(4)BC(2)D(2)Si(4)O(22) where, in the analysed specimens A = (rare-earth elements (REE), Ca, Y, Th), B = Fe(2+) Mg, C = (Al, Mg, Ti, Fe(2+), Fe(3+), Zr) and D = Ti and plot within the perrierite field oftlic total Fe (as FeO) (wt.%) vs. CaO (wt.%) discriminator diagram of Macdonald and Belkin (2002). In contrast to most chevkinite-group minerals, the A site shows unusual enrichment in the MREE and HREE relative to the LREE and Ca. In one sample from the Napier Complex, Y is the dominant cation among the total REE + Y in the A site, the first reported case of Y-dominance in the chevkinite group. The minerals include the most Al-rich yet reported in the chevkinite group (\u3c= 9.15 wt.% Al(2)O(3)), sufficient to fill the C site in two samples. Conversely, the amount of Ti in these samples does not fill the D site. and, thus, some of the Al could be making up the deficiency at D, a situation not previously reported in the chevkinite group. Fe abudances are low, requiring Mg to occupy up to 45% of the B site. The chevkinite-group minerals analysed originated from three distinct parageneses: (1) pegmatites containing hornblende and orthopyroxene or garnet; (2) orthopyroxene-bearing gneiss and granulite; (3) highly aluminous paragneisses in which the associated minerals are relatively magnesian or aluminous. Chevkinite-group minerals from the first two parageneses have relatively high FeO content and low MgO and Al(2)O(3) contents; their compositions plot in the field for mafic and intermediate igneous rocks. In contrast, chevkinite-group minerals from the third paragenesis are notably more aluminous and have greater Mg/Fe ratios

    A new approach to estimating Mean Flow in the UK

    Get PDF
    Traditionally, the estimation of Mean Flow (MF) in ungauged catchments has been approached using conceptual water balance models or empirical formulae relating climatic inputs to stream flow. In the UK, these types of models have difficulty in predicting MF in low rainfall areas because the conceptualisation of soil moisture behaviour and its relationship with evaporation rates used is rather simplistic. However, it is in these dry regions where the accurate estimation of flows is most critical to effective management of a scarce resource. A novel approach to estimating MF, specifically designed to improve estimation of runoff in dry catchments, has been developed using a regionalisation of the Penman drying curve theory. The dynamic water balance style Daily Soil Moisture Accounting (DSMA) model operates at a daily time step, using inputs of precipitation and potential evaporation and simulates the development of soil moisture deficits explicitly. The model has been calibrated using measured MFs from a large data set of catchments in the United Kingdom. The performance of the DSMA model is superior to existing established steady state and dynamic water-balance models over the entire data set considered and the largest improvement is observed in very low rainfall catchments. It is concluded that the performance of all models in high rainfall areas is likely to be limited by the spatial representation of rainfall.</p> <p style='line-height: 20px;'><b>Keywords: </b>hydrological models, regionalisation, water resources, mean flow, runoff, water balance, Penman drying curve, soil moisture model</p

    Holtite and Dumortierite from the Szklary Pegmatite, Lower Silesia, Poland

    Get PDF
    The Szklary holtite is represented by three compositional varieties: (I) Ta-bearing (up to 14.66 wt.% Ta(2)O(5)), which forms homogeneous crystals and cores within zoned crystals; (2) Ti-bearing (up to 3.82 wt.% TiO(2)), found as small domains within the core; and (3) Nb-bearing (up to 5.30 wt.% Nb(2)O(5),) forming the rims of zoned crystals. All three varieties show variable Sb+As content, reaching 19.18 wt.% Sb(2)O(3) (0.87 Sb a.p.f.u.) and 3.30 wt.% As(2)O(3) (0.22 As a.p.f.u.) in zoned Ta-bearing holtite, which constitutes the largest Sb+As content reported for the mineral. The zoning in holtite is a result of Ta-Nb fractionation in the parental pegmatite-forming melt together with contamination of the relatively thin Szklary dyke by Fe, Mg and Ti. Holtite and the As- and Sb-bearing dumortierite, which in places overgrows the youngest Nb-bearing zone, suggest the following crystallization sequence: Ta-bearing holtite -\u3e Ti-bearing holtite -\u3e Nb-bearing holtite -\u3e As- and Sb-bearing, (Ta,Nb,Ti)-poor dumortierite -\u3e As- and Sb-dominant, (Ta,Nb,Ti)-free dumortierite-like mineral (16.81 wt.% As(2)O(3) and 10.23 wt.% Sb(2)O(3)) with (As+Sb) \u3e Si. The last phase is potentially a new mineral species, Al(6)rectangle B(Sb,As)(3)O(15). or Al(5)rectangle(2)B(Sb,As)(3)O(12)(OH)(3), belonging to the dumortierite group. The Szklary holtite shows no evidence of clustering of compositions around \u27holtite I\u27 and \u27holtite II\u27. Instead, the substitutions of Si(4+) by Sb(3+)+As(3+) at the Si/Sb sites and of Ta(5+) by Nb(5+) or Ti(4+) at the Al(l) site suggest possible solid solutions between: (1) (Sb,As)-poor and (Sb,As)-rich holtite; (2) dumortierite and the unnamed (As+Sb)-dominant dumortierite-like mineral; and (3) Ti-bearing dumortierite and holtite, i.e. our data provide further evidence for miscibility between holtite and dumortierite, but leave open the question of defining the distinction between them. The Szklary holtite crystallized from the melt along with other primary Ta-Nb-(Ti) minerals such as columbite-(Mn), tantalite-(Mn), stibiotantalite and stibiocolumbite as the availability of Ta decreased. The origin of the parental melt can be related to anatexis in the adjacent Sowie Mountains complex, leading to widespread migmatization and metamorphic segregation in pelitic-psammitic sediments metamorphosed at similar to 390-380 Ma

    A region of influence approach to predicting flow duration curves within ungauged catchments

    No full text
    International audienceThe development of regionalised hydrological models or procedures for estimating flow duration statistics has been the subject of international research since the 1970s. Historically these models have been based on multivariate statistical models that relate flow statistics to the physical and climatic characteristics of a catchment. The a priori classification of catchments has often been a component of this analysis. This paper discusses the background to the development of such models, with particular emphasis on the United Kingdom; it describes a new region of influence approach to estimating flow duration statistics and compares the performance of this method with current multivariate regression based methods for estimating flow duration statistics within the United Kingdom. Keywords: hydrological models, regionalisation, river networks, water resources, flow duration curves, region of influence</p

    The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups

    Get PDF
    Although the distinction between magnesiodumortieite and dumortierite, i.e. Mg vs. Al dominance at the partially vacant octahedral Al1 site, had met current criteria of the IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) for distinguishing mineral species, the distinction between holtite and dumortierite had not, since Al and Si are dominant over Ta and (Sb, As) at the Al1 and two Si sites, respectively, in both minerals. Recent studies have revealed extensive solid solution between Al, Ti, Ta and Nb at Al1 and between Si, As and Sb at the two Si sites or nearly coincident (As, Sb) sites in dumortierite and holtite, further blurring the distinction between the two minerals. This situation necessitated revision in the nomenclature of the dumortierite group. The newly constituted dumortierite supergroup, space group Pnma (no. 62), comprises two groups and six minerals, one of which is the first member of a potential third group, all isostructural with dumortierite. The supergroup, which has been approved by the CNMNC, is based on more specific end-member compositions for dumortierite and holtite, in which occupancy of the Al1 site is critical. (1) Dumortierite group, with Al1 = Al^(3+), Mg^(2+) and 〈, where 〈 denotes cation vacancy. Charge balance is provided by OH substitution for O at the O2, O7 and O10 sites. In addition to dumortierite, endmember composition AlAl_6Bsi_3O_(18), and magnesiodumortierite, endmember composition MgAl_6Bsi_3O_(17)(OH), plus three endmembers, “hydroxydumortierite”, 〈Al_6Bsi_3O_(15)(OH)_3 and two Mg-Ti analogues of dumortierite, (Mg_(0.5)Ti_(0.5))Al_6Bsi_3O_(18) and (Mg_(0.5)Ti_(0.5))Mg_2Al_4Bsi_3O_(16)(OH)_2, none of which correspond to mineral species. Three more hypothetical endmembers are derived by homovalent substitutions of Fe^(3+) for Al and Fe^(2+) for Mg. (2) Holtite group, with Al1 = Ta^(5+), Nb^(5+), Ti^(4+) and 〈. In contrast to the dumortierite group, vacancies serve not only to balance the extra charge introduced by the incorporation of pentavalent and quadrivalent cations for trivalent cations at Al1, but also to reduce repulsion between the highly charged cations. This group includes holtite, endmember composition (Ta_(0.6)〈_(0.4))Al_6Bsi_3O_(18), nioboholite (2012-68), endmember composition (Nb_(0.6)〈_(0.4_)Al_6Bsi_3O_(18), and titanoholtite (2012-69), endmember composition (Ti_(0.75)〈_(0.25))Al_6Bsi_3O_(18). (3) Szklaryite (2012-70) with Al1 = 〈 and an endmember formula 〈Al_6Bas^(3+)_ 3O_(15). Vacancies at Al1 are caused by loss of O at O2 and O7, which coordinate the Al1 with the Si sites, due to replacement of Si^(4+) by As^(3+) and Sb^(3+), and thus this mineral does not belong in either the dumortierite or the holtite group. Although szklaryite is distinguished by the mechanism introducing vacancies at the Al1 site, the primary criterion for identifying it is based on occupancy of the Si/As, Sb sites: (As^(3+) + Sb^(3+)) > Si^(4+) consistent with the dominant-valency rule. A Sb^(3+) analogue to szklaryite is possible

    The dumortierite supergroup. II. Three new minerals from the Szklary pegmatite, SW Poland: Nioboholtite, (Nb_(0.6)〈_(0.4))Al_6Bsi_3O_(18), titanoholtite, (Ti_(0.75)〈_(0.25))Al_6Bsi_3O_(18), and szklaryite 〈Al_6Bas^(3+)_ 3O_(15)

    Get PDF
    Three new minerals in the dumortierite supergroup were discovered in the Szklary pegmatite, Lower Silesia, Poland. Nioboholtite, endmember (Nb_(0.6)〈_(0.4))Al_6B_3Si_3O_(18), and titanoholtite, endmember (Ti_(0.75)〈_(0.25))Al_6B_3Si_3O_(18), are new members of the holtite group, whereas szklaryite, endmember 〈Al_6Bas^(3+)_ 3O_(15), is the first representative of a potential new group. Nioboholtite occurs mostly as overgrowths not exceeding 10 μm in thickness on cores of holtite. Titanoholtite forms patches up to 10 μm across in the holtite cores and streaks up to 5 μm wide along boundaries between holtite cores and the nioboholtite rims. Szklaryite is found as a patch ∼2 μm in size in As- and Sb- bearing dumortierite enclosed in quartz. Titanoholtite crystallized almost simultaneously with holtite and other Ta-dominant minerals such as tantalite-(Mn) and stibiotantalite and before nioboholtite, which crystallized simultaneously with stibiocolumbite during decreasing Ta activity in the pegmatite melt. Szklaryite crystallized after nioboholtite during the final stage of the Szklary pegmatite formation. Optical properties could be obtained only from nioboholtite, which is creamy-white to brownish yellow or grey-yellow in hand specimen, translucent, with a white streak, biaxial (–), n_α = 1.740 – 1.747, n_β ∼ 1.76, n_γ ∼ 1.76, and Δ < 0.020. Electron microprobe analyses of nioboholtite, titanoholtite and szklaryite give, respectively, in wt.%: P_2O_5 0.26, 0.01, 0.68; Nb_2O_55.21, 0.67, 0.17; Ta_2O_5 0.66, 1.18, 0.00; SiO_2 18.68, 21.92, 12.78; TiO_2 0.11, 4.00, 0.30; B_2O_3 4.91, 4.64, 5.44; Al_2O_3 49.74, 50.02, 50.74; As_2O_3 5.92, 2.26, 16.02; Sb_2O_3 10.81, 11.48, 10.31; FeO 0.51, 0.13, 0.19; H_2O (calc.) 0.05, –, –, Sum 96.86, 96.34, 97.07, corresponding on the basis of O = 18–As–Sb to {(Nb_(0.26)Ta_(0.02)〈_(0.18)) (Al_(0.27)Fe_(0.05)Ti_(0.01))〈_(0.21)}_(Σ1.00)Al_6B_(0.92){Si_(2.03)P_(0.02)(Sb_(0.48)As_(0.39)Al_(0.07)}_(Σ3.00)(O_(17.09)OH_(0.04)〈_(0.87))_(Σ18.00), {(Ti_(0.32) Nb_(0.03)Ta_(0.03)〈_(0.10) )(Al_(0.3 5) Ti_(0.01) Fe_(0.01))〈_(0.15)}_(Σ1.00) Al_6 B_(0.86) {Si_(2.36) (Sb_(0.51) As_(0.14) )}_(Σ3.01)(O_(17.35)〈_(0.65))_(Σ18.00) and {〈_(0.53) (Al_(0.41) Ti_(0.02) Fe_(0.02))(Nb_(0.01)〈_(0.01) )}_(Σ1.00)Al_6 B_(1.01) {(As_(1.07) Sb_(0.47) Al_(0.03)) Si_(1.37) P_(0.06)}_(Σ3.00)(O_(16.46)〈_(1.54))_(Σ18.00). Electron backscattered diffraction indicates that the three minerals are presumably isostructural with dumortierite, that is, orthorhombic symmetry, space group Pnma (no. 62), and unit-cell parameters close to a = 4.7001, b = 11.828, c = 20.243 Å, with V = 1125.36 Å^3 and Z = 4; micro-Raman spectroscopy provided further confirmation of the structural relationship for nioboholtite and titanoholtite. The calculated density is 3.72 g/cm^3 for nioboholtite, 3.66 g/cm^3 for titanoholtite and 3.71 g/cm^3 for szklaryite. The strongest lines in X-ray powder diffraction patterns calculated from the cell parameters of dumortierite of Moore and Araki (1978) and the empirical formulae of nioboholtite, titanoholtite and szklaryite are [d, Å, I (hkl)]: 10.2125, 67, 46, 19 (011); 5.9140, 40, 47, 57 (020); 5.8610, 66, 78, 100 (013); 3.4582, 63, 63, 60 (122); 3.4439, 36, 36, 34 (104); 3.2305, 100, 100, 95 (123); 3.0675, 53, 53, 50 (105); 2.9305, 65, 59, 51 (026); 2.8945, 64, 65, 59 (132), respectively. The three minerals have been approved by the IMA CNMNC (IMA 2012-068, 069, 070) and were named for their relationship to holtite and occurrence in the Szklary pegmatite, respectively
    corecore