114 research outputs found

    Self-similar spherically symmetric cosmological models with a perfect fluid and a scalar field

    Get PDF
    Self-similar, spherically symmetric cosmological models with a perfect fluid and a scalar field with an exponential potential are investigated. New variables are defined which lead to a compact state space, and dynamical systems methods are utilised to analyse the models. Due to the existence of monotone functions global dynamical results can be deduced. In particular, all of the future and past attractors for these models are obtained and the global results are discussed. The essential physical results are that initially expanding models always evolve away from a massless scalar field model with an initial singularity and, depending on the parameters of the models, either recollapse to a second singularity or expand forever towards a flat power-law inflationary model. The special cases in which there is no barotropic fluid and in which the scalar field is massless are considered in more detail in order to illustrate the asymptotic results. Some phase portraits are presented and the intermediate dynamics and hence the physical properties of the models are discussed.Comment: 31 pages, 4 figure

    Measurement of Skin Induration Size Using Smartphone Images and Photogrammetric Reconstruction: Pilot Study

    Get PDF
    Background: The tuberculin skin test (TST) is the most common method for detecting latent tuberculosis infection (LTBI). The test requires that a patient return to the health facility or be visited by a health care worker 48 to 72 hours after the intradermal placement of tuberculin so that the size of the resulting skin induration, if any, can be measured. Objective: This study aimed to propose and evaluate an image-based method for measuring induration size from images captured using a smartphone camera. Methods: We imaged simulated skin indurations, ranging from 4.0 to 19 mm, in 10 subjects using a handheld smartphone, and performed three-dimensional reconstruction of the induration sites using photogrammetry software. An experienced TST reader measured the size of each induration using the standard clinical method. The experienced reader and an inexperienced observer both measured the size of each induration using the software. The agreement between measurements generated by the standard clinical and image-based methods was assessed using the intraclass correlation coefficient (ICC). Inter- and intraobserver agreement for the image-based method was similarly evaluated. Results: Results showed excellent agreement between the standard and image-based measurements performed by the experienced reader with an ICC value of .965. Inter- and intraobserver agreements were also excellent, indicating that experience in reading TSTs is not required with our proposed method. Conclusions: We conclude that the proposed smartphone image-based method is a potential alternative to standard induration size measurement and would enable remote data collection for LTBI screening

    Matrix Degradation in Human Immunodeficiency Virus Type 1-Associated Tuberculosis and Tuberculosis Immune Reconstitution Inflammatory Syndrome: A Prospective Observational Study.

    Get PDF
    Background: Extensive immunopathology occurs in human immunodeficiency virus (HIV)/tuberculosis (TB) coinfection, but the underlying molecular mechanisms are not well-defined. Excessive matrix metalloproteinase (MMP) activity is emerging as a key process but has not been systematically studied in HIV-associated TB. Methods: We performed a cross-sectional study of matrix turnover in HIV type 1 (HIV-1)-infected and -uninfected TB patients and controls, and a prospective cohort study of HIV-1-infected TB patients at risk of TB immune reconstitution inflammatory syndrome (TB-IRIS), in Cape Town, South Africa. Sputum and plasma MMP concentrations were quantified by Luminex, plasma procollagen III N-terminal propeptide (PIIINP) by enzyme-linked immunosorbent assay, and urinary lipoarabinomannan (LAM) by Alere Determine TB LAM assay. Peripheral blood mononuclear cells from healthy donors were cultured with Mycobacterium tuberculosis and extracellular matrix in a 3D model of TB granuloma formation. Results: MMP activity differed between HIV-1-infected and -uninfected TB patients and corresponded with specific TB clinical phenotypes. HIV-1-infected TB patients had reduced pulmonary MMP concentrations, associated with reduced cavitation, but increased plasma PIIINP, compared to HIV-1-uninfected TB patients. Elevated extrapulmonary extracellular matrix turnover was associated with TB-IRIS, both before and during TB-IRIS onset. The predominant collagenase was MMP-8, which was likely neutrophil derived and M. tuberculosis-antigen driven. Mycobacterium tuberculosis-induced matrix degradation was suppressed by the MMP inhibitor doxycycline in vitro. Conclusions: MMP activity in TB differs by HIV-1 status and compartment, and releases matrix degradation products. Matrix turnover in HIV-1-infected patients is increased before and during TB-IRIS, informing novel diagnostic strategies. MMP inhibition is a potential host-directed therapy strategy for prevention and treatment of TB-IRIS

    SNOC: a Monte-Carlo simulation package for high-z supernova observations

    Get PDF
    We present a Monte-Carlo package for simulation of high-redshift supernova data, SNOC. Optical and near-infrared photons from supernovae are ray-traced over cosmological distances from the simulated host galaxy to the observer at Earth. The distances to the sources are calculated from user provided cosmological parameters in a Friedmann-Lemaitre universe, allowing for arbitrary forms of ``dark energy''. The code takes into account gravitational interactions (lensing) and extinction by dust, both in the host galaxy and in the line-of-sight. The user can also choose to include exotic effects like a hypothetical attenuation due to photon-axion oscillations. SNOC is primarily useful for estimations of cosmological parameter uncertainties from studies of apparent brightness of Type Ia supernovae vs redshift, with special emphasis on potential systematic effects. It can also be used to compute standard cosmological quantities like luminosity distance, lookback time and age of the universe in any Friedmann-Lemaitre model with or without quintessence.Comment: 16 pages, 3 figure

    Closed cosmologies with a perfect fluid and a scalar field

    Get PDF
    Closed, spatially homogeneous cosmological models with a perfect fluid and a scalar field with exponential potential are investigated, using dynamical systems methods. First, we consider the closed Friedmann-Robertson-Walker models, discussing the global dynamics in detail. Next, we investigate Kantowski-Sachs models, for which the future and past attractors are determined. The global asymptotic behaviour of both the Friedmann-Robertson-Walker and the Kantowski-Sachs models is that they either expand from an initial singularity, reach a maximum expansion and thereafter recollapse to a final singularity (for all values of the potential parameter kappa), or else they expand forever towards a flat power-law inflationary solution (when kappa^2<2). As an illustration of the intermediate dynamical behaviour of the Kantowski-Sachs models, we examine the cases of no barotropic fluid, and of a massless scalar field in detail. We also briefly discuss Bianchi type IX models.Comment: 15 pages, 10 figure

    Spatially self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for spatially self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively with the theory of dynamical systems.Comment: 21 pages, 6 eps-figure

    Supernovae and the Nature of the Dark Energy

    Get PDF
    The use of Type Ia supernovae as calibrated standard candles is one of the most powerful tools to study the expansion history of the universe and thereby its energy components. While the analysis of some ~50 supernovae at redshifts around z~0.5 have provided strong evidence for an energy component with negative pressure, ``dark energy'', more data is needed to enable an accurate estimate of the amount and nature of this energy. This might be accomplished by a dedicated space telescope, the SuperNova / Acceleration Probe (2000; SNAP), which aims at collecting a large number of supernovae with z<2. In this paper we assess the ability of the SNAP mission to determine various properties of the ``dark energy.'' To exemplify, we expect SNAP, if operated for three years to study Type Ia supernovae, to be able to determine the parameters in a linear equation of state w(z)=w0 + w1 z to within a statistical uncertainty of +-0.04 for w0 and +0.15,-0.17 for w1 assuming that the universe is known to be flat and an independent high precision (sigma_{Omega_m}=0.015) measurement of the mass density Omega_m, is used to constrain the fit. An additional improvement can be obtained if a large number of low-z, as well as high-z, supernovae are included in the sample.Comment: 13 pages, submitted to A&

    Convergence to a self-similar solution in general relativistic gravitational collapse

    Get PDF
    We study the spherical collapse of a perfect fluid with an equation of state P=kρP=k\rho by full general relativistic numerical simulations. For 0, it has been known that there exists a general relativistic counterpart of the Larson-Penston self-similar Newtonian solution. The numerical simulations strongly suggest that, in the neighborhood of the center, generic collapse converges to this solution in an approach to a singularity and that self-similar solutions other than this solution, including a ``critical solution'' in the black hole critical behavior, are relevant only when the parameters which parametrize initial data are fine-tuned. This result is supported by a mode analysis on the pertinent self-similar solutions. Since a naked singularity forms in the general relativistic Larson-Penston solution for 0, this will be the most serious known counterexample against cosmic censorship. It also provides strong evidence for the self-similarity hypothesis in general relativistic gravitational collapse. The direct consequence is that critical phenomena will be observed in the collapse of isothermal gas in Newton gravity, and the critical exponent γ\gamma will be given by γ0.11\gamma\approx 0.11, though the order parameter cannot be the black hole mass.Comment: 22 pages, 15 figures, accepted for publication in Physical Review D, reference added, typos correcte

    Analysis of the Phenotype of Mycobacterium tuberculosis-Specific CD4+T Cells to Discriminate Latent from Active Tuberculosis in HIV-Uninfected and HIV-Infected Individuals

    Get PDF
    Several immune-based assays have been suggested to differentiate latent from active tuberculosis (TB). However, their relative performance as well as their efficacy in HIV-infected persons, a highly at-risk population, remains unclear. In a study of 81 individuals, divided into four groups based on their HIV-1 status and TB disease activity, we compared the differentiation (CD27 and KLRG1), activation (HLA-DR), homing potential (CCR4, CCR6, CXCR3, and CD161) and functional profiles (IFNγ, IL-2, and TNFα) of Mycobacterium tuberculosis (Mtb)-specific CD4+ T cells using flow cytometry. Active TB disease induced major changes within the Mtb-responding CD4+ T cell population, promoting memory maturation, elevated activation and increased inflammatory potential when compared to individuals with latent TB infection. Moreover, the functional profile of Mtb-specific CD4+ T cells appeared to be inherently related to their degree of differentiation. While these specific cell features were all capable of discriminating latent from active TB, irrespective of HIV status, HLA-DR expression showed the best performance for TB diagnosis [area-under-the-curve (AUC) = 0.92, 95% CI: 0.82–1.01, specificity: 82%, sensitivity: 84% for HIV− and AUC = 0.99, 95% CI: 0.98–1.01, specificity: 94%, sensitivity: 93% for HIV+]. In conclusion, these data support the idea that analysis of T cell phenotype can be diagnostically useful in TB
    corecore