67 research outputs found

    Aqueous peptide-TiO2 interfaces: iso-energetic binding via either entropically- or enthalpically-driven mechanisms

    Get PDF
    A major barrier to the systematic improvement of biomimetic peptide-mediated strategies for the controlled growth of inorganic nanomaterials in environmentally benign conditions lies in the lack of clear conceptual connections between the sequence of the peptide and its surface binding affinity, with binding being facilitated by non-covalent interactions. Peptide conformation, both in the adsorbed and non-adsorbed state, is the key relationship that connects peptide-materials binding with peptide sequence. Here, we combine experimental peptide–titania binding characterization with state-of-the-art conformational sampling via molecular simulations to elucidate these structure/binding relationships for two very different titania-binding peptide sequences. The two sequences (Ti-1: QPYLFATDSLIK and Ti-2: GHTHYHAVRTQT) differ in their overall hydropathy, yet via quartz-crystal microbalance measurements and predictions from molecular simulations, we show these sequences both support very similar, strong titania-binding affinities. Our molecular simulations reveal that the two sequences exhibit profoundly different modes of surface binding, with Ti-1 acting as an entropically-driven binder while Ti-2 behaves as an enthalpically-driven binder. The integrated approach presented here provides a rational basis for peptide sequence engineering to achieve the in-situ growth and organization of titania nanostructures in aqueous media and for the design of sequences suitable for a range of technological applications that involve the interface between titania and biomolecules

    The low-lying excitations of polydiacetylene

    Full text link
    The Pariser-Parr-Pople Hamiltonian is used to calculate and identify the nature of the low-lying vertical transition energies of polydiacetylene. The model is solved using the density matrix renormalisation group method for a fixed acetylenic geometry for chains of up to 102 atoms. The non-linear optical properties of polydiacetylene are considered, which are determined by the third-order susceptibility. The experimental 1Bu data of Giesa and Schultz are used as the geometric model for the calculation. For short chains, the calculated E(1Bu) agrees with the experimental value, within solvation effects (ca. 0.3 eV). The charge gap is used to characterise bound and unbound states. The nBu is above the charge gap and hence a continuum state; the 1Bu, 2Ag and mAg are not and hence are bound excitons. For large chain lengths, the nBu tends towards the charge gap as expected, strongly suggesting that the nBu is the conduction band edge. The conduction band edge for PDA is agreed in the literature to be ca. 3.0 eV. Accounting for the strong polarisation effects of the medium and polaron formation gives our calculated E(nBu) ca. 3.6 eV, with an exciton binding energy of ca. 1.0 eV. The 2Ag state is found to be above the 1Bu, which does not agree with relaxed transition experimental data. However, this could be resolved by including explicit lattice relaxation in the Pariser- Parr-Pople-Peierls model. Particle-hole separation data further suggest that the 1Bu, 2Ag and mAg are bound excitons, and that the nBu is an unbound exciton.Comment: LaTeX, 23 pages, 4 postscript tables and 8 postscript figure

    Category Theoretic Analysis of Hierarchical Protein Materials and Social Networks

    Get PDF
    Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a “concept web” or “semantic network” except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine.Presidential Early Career Award for Scientists and Engineers (N000141010562)United States. Army Research Office. Multidisciplinary University Research Initiative (W911NF0910541)United States. Office of Naval Research (grant N000141010841)Massachusetts Institute of Technology. Dept. of MathematicsStudienstiftung des deutschen VolkesClark BarwickJacob Luri

    Characterization of Field Tracer Transport using High-Resolution Images

    No full text
    Flow and transport in soils and groundwater are greatly affected by subsurface heterogeneity. We present results from infiltration experiments on four heterogeneous field plots (Orthic Luvisol) for plowed and nonplowed conditions. A2-mm pulse of Br- was applied, followed a 40-mm application of a 5 g L-1 solution of the food dye Brilliant Blue FCF (Color Index 42090) in a 6-h period. Horizontal cross sections were photographed at 0.05- and 0.10-m depth intervals, representing the A(p) and B-t horizons, respectively, either immediately or 90 d after the tracer application. High-resolution spatial maps of Brilliant Blue concentration were derived from the scanned photographs using one single calibration relationship between Brilliant Blue concentration and the color spectra for all plots and depths. No significant or consistent directional dependence was observed in the spatial correlation structure of the dye concentration for the horizontal cross sections. However, the integral scale showed a distinct depth dependency, partially caused by horizonation, with a larger value in the Ap than in the B-t horizon. Disturbed soil samples were taken at 15 locations for each cross section and analyzed for Br-. Although Brilliant Blue was retarded in the soil matrix with respect to Br-, both tracer concentrations showed an exponential decay with depth because of preferential flow enhanced by plowing. Only a small fraction of the dye was subjected to fast transport. The plot-scale information of the dye distribution revealed that our 15 sampling locations at each depth sufficient to identify the averaged plot-scale transport behavior in the soil matrix, but failed to represent the conducting preferential flow pathways

    Straßenunterhaltung einschließlich Winterdienst

    No full text
    corecore