51 research outputs found

    300 GHz CMOS video detection using broadband and active planar antennas

    Full text link
    Using CMOS transistors for terahertz detection is currently a disruptive technology that offers the direct integration of a terahertz detector with video preamplifiers. The detectors are based on the resistive mixer concept and performance mainly depends on the following parameters: type of antenna, electrical parameters (gate to drain capacitor and channel length of the CMOS device) and foundry. Two different 300 GHz detectors are discussed: a single transistor detector with a broadband antenna and a differential pair driven by a resonant patch antenna

    Receptores homodinos a 300 GHz basados en tecnologĂ­a CMOS

    Full text link
    Using CMOS transistors for terahertz detection is currently a disruptive technology that offers the direct integration of a terahertz detector with video preamplifiers. The detectors are based on the resistive mixer concept and its performance mainly depends on the following parameters: type of antenna, electrical parameters (gate to drain capacitor and channel length of the CMOS device) and foundry. Two different 300 GHz detectors are discussed: a single transistor detector with a broadband antenna and a differential pair driven by a resonant patch antenna

    Sistema de enfoque basado en dos espejos elĂ­pticos y un espejo plano rotatorio para un radar a 300 GHz

    Get PDF
    A focusing system for a 300 GHz radar with two target distances (5m and 10m) is proposed, having 1cm resolution in both cases. The focusing system is based on a gaussian telescope scheme and it has been designed using gaussian beam quasi-optical propagation theory with a homemade Matlab analysis tool. It has been translated into a real focusing system based on two elliptical mirrors and a plane mirror in order to have scanning capabilities and validated using the commercial antenna software GRAS

    Insulin resistance and its association with the components of the metabolic syndrome among obese children and adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance is the primary metabolic disorder associated with obesity; yet little is known about its role as a determinant of the metabolic syndrome in obese children. The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among obese children and adolescents.</p> <p>Methods</p> <p>An analytical, cross-sectional and population-based study was performed in forty-four public primary schools in Campeche City, Mexico. A total of 466 obese children and adolescents between 11-13 years of age were recruited. Fasting glucose and insulin concentrations, high density lipoprotein cholesterol, triglycerides, waist circumference, systolic and diastolic blood pressures were measured; insulin resistance and metabolic syndrome were also evaluated.</p> <p>Results</p> <p>Out of the total population studied, 69% presented low values of high density lipoprotein cholesterol, 49% suffered from abdominal obesity, 29% had hypertriglyceridemia, 8% presented high systolic and 13% high diastolic blood pressure, 4% showed impaired fasting glucose, 51% presented insulin resistance and 20% metabolic syndrome. In spite of being obese, 13% of the investigated population did not present any metabolic disorder. For each one of the components of the metabolic syndrome, when insulin resistance increased so did odds ratios as cardiometabolic risk factors.</p> <p>Conclusions</p> <p>Regardless of age and gender an increased degree of insulin resistance is associated with a higher prevalence of disorders in each of the components of the metabolic syndrome and with a heightened risk of suffering metabolic syndrome among obese children and adolescents.</p

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Extending MAM5 Meta-Model and JaCalIVE Framework to Integrate Smart Devices from Real Environments

    Full text link
    [EN] This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.This work is partially supported by the TIN2009-13839-C03-01, TIN2011-27652-C03-01, 547CSD2007-00022, COST Action IC0801, FP7-294931 and the FPI grant AP2013-01276 548 awarded to Jaime-Andres Rincon.RincĂłn Arango, JA.; Poza LujĂĄn, JL.; Julian Inglada, VJ.; Posadas YagĂŒe, JL.; Carrascosa Casamayor, C. (2016). Extending MAM5 Meta-Model and JaCalIVE Framework to Integrate Smart Devices from Real Environments. PLoS ONE. 11(2):1-27. https://doi.org/10.1371/journal.pone.0149665S127112Luck, M., & Aylett, R. (2000). Applying artificial intelligence to virtual reality: Intelligent virtual environments. Applied Artificial Intelligence, 14(1), 3-32. doi:10.1080/088395100117142Barella A, Ricci A, Boissier O, Carrascosa C. MAM5: Multi-Agent Model For Intelligent Virtual Environments. In: 10th European Workshop on Multi-Agent Systems (EUMAS 2012); 2012. p. 16–30.Omicini, A., Ricci, A., & Viroli, M. (2008). Artifacts in the A&A meta-model for multi-agent systems. Autonomous Agents and Multi-Agent Systems, 17(3), 432-456. doi:10.1007/s10458-008-9053-xYu Ch, Nagpal R. Distributed Consensus and Self-Adapting Modular Robots. In: IROS-2008 workshop on Self-Reconfigurable Robots and Applications; 2008. Available from: http://www.isi.edu/robots/iros08wksp/Papers/iros08-wksp-paper.pdfLidoris G, Buss M. A Multi-Agent System Architecture for Modular Robotic Mobility Aids. In: European Robotics Symposium 2006; 2006. p. 15–26. Available from: http://link.springer.com/chapter/10.1007/11681120_2Yu, C.-H., & Nagpal, R. (2010). A Self-adaptive Framework for Modular Robots in a Dynamic Environment: Theory and Applications. The International Journal of Robotics Research, 30(8), 1015-1036. doi:10.1177/0278364910384753Barbero A, GonzĂĄlez-RodrĂ­guez MS, de Lara J, Alfonseca M. Multi-Agent Simulation of an Educational Collaborative Web System. In: European Simulation and Modelling Conference; 2007. Available from: http://sistemas-humano-computacionais.wikidot.com/local--files/capitulo:colaboracao-auxiliada-por-computador/%5BBarbero%202007%5D%20Multi-Agent%20Simulation%20of%20an%20Educational%20Collaborative%20Web%20System.pdfRanathunga S, Cranefield S, Purvis MK. Interfacing a cognitive agent platform with a virtual world: a case study using Second Life. In: AAMAS; 2011. p. 1181–1182. Available from: http://www.aamas-conference.org/Proceedings/aamas2011/papers/B20.pdfAndreoli R, De Chiara R, Erra U, Scarano V. Interactive 3d environments by using videogame engines. In: Information Visualisation, 2005. Proceedings. Ninth International Conference on. IEEE; 2005. p. 515–520. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1509124Dignum, F. (2011). Agents for games and simulations. Autonomous Agents and Multi-Agent Systems, 24(2), 217-220. doi:10.1007/s10458-011-9169-2dos Santos C, Osorio F. AdapTIVE: an intelligent virtual environment and its application in e-commerce. In: Computer Software and Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual International; 2004. p. 468–473 vol.1.Kazemi, A., Fazel Zarandi, M. H., & Moattar Husseini, S. M. (2008). A multi-agent system to solve the production–distribution planning problem for a supply chain: a genetic algorithm approach. The International Journal of Advanced Manufacturing Technology, 44(1-2), 180-193. doi:10.1007/s00170-008-1826-5Dimuro GP, Costa ACdR, Gonçalves LV, Hubner A. Interval-valued Hidden Markov Models for recognizing personality traits in social exchanges in open multiagent systems. RepositĂłrio Institucional da Universidade Federal do Rio Grande. 2008;.WoĆșniak, M., Graña, M., & Corchado, E. (2014). A survey of multiple classifier systems as hybrid systems. Information Fusion, 16, 3-17. doi:10.1016/j.inffus.2013.04.006Jia L, Zhenjiang M. Entertainment Oriented Intelligent Virtual Environment with Agent and Neural Networks. In: IEEE International Workshop on Haptic, Audio and Visual Environments and Games, 2007. HAVE 2007; 2007. p. 90–95.Corchado, E., WoĆșniak, M., Abraham, A., de Carvalho, A. C. P. L. F., & SnĂĄĆĄel, V. (2014). Recent trends in intelligent data analysis. Neurocomputing, 126, 1-2. doi:10.1016/j.neucom.2013.07.001Ricci A, Viroli M, Omicini A. Give agents their artifacts: the A&amp;A approach for engineering working environments in MAS. In: Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems; 2007. p. 150. Available from: http://dl.acm.org/citation.cfm?id=1329308Barella, A., Valero, S., & Carrascosa, C. (2009). JGOMAS: New Approach to AI Teaching. IEEE Transactions on Education, 52(2), 228-235. doi:10.1109/te.2008.925764Behrens, T. M., Hindriks, K. V., & Dix, J. (2010). Towards an environment interface standard for agent platforms. Annals of Mathematics and Artificial Intelligence, 61(4), 261-295. doi:10.1007/s10472-010-9215-9Ricci A, Viroli M, Omicini A. A general purpose programming model &amp; technology for developing working environments in MAS. In: 5th International Workshop Programming Multi-Agent Systems(PROMAS 2007); 2007. p. 54–69. Available from: http://lia.deis.unibo.it/~ao/pubs/pdf/2007/promas.pdfChee-Yee Chong, & Kumar, S. P. (2003). Sensor networks: Evolution, opportunities, and challenges. Proceedings of the IEEE, 91(8), 1247-1256. doi:10.1109/jproc.2003.814918Kushner D. The making of arduino. IEEE Spectrum. 2011;26.Schmidt, A., & van Laerhoven, K. (2001). How to build smart appliances? IEEE Personal Communications, 8(4), 66-71. doi:10.1109/98.944006Salzmann C, Gillet D. Smart device paradigm standardization for online labs. In: 4th IEEE Global Engineering Education Conference (EDUCON); 2013.Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E., MartĂ­nez-SĂĄnchez, J., & Arias, P. (2013). Metrological evaluation of Microsoft Kinect and Asus Xtion sensors. Measurement, 46(6), 1800-1806. doi:10.1016/j.measurement.2013.01.011Cook, D. J., & Das, S. K. (2007). How smart are our environments? An updated look at the state of the art. Pervasive and Mobile Computing, 3(2), 53-73. doi:10.1016/j.pmcj.2006.12.001Compton, M., Barnaghi, P., Bermudez, L., GarcĂ­a-Castro, R., Corcho, O., Cox, S., 
 Taylor, K. (2012). The SSN ontology of the W3C semantic sensor network incubator group. Journal of Web Semantics, 17, 25-32. doi:10.1016/j.websem.2012.05.003Munera, E., Poza-Lujan, J.-L., Posadas-YagĂŒe, J.-L., SimĂł-Ten, J.-E., & Noguera, J. (2015). Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems. Sensors, 15(8), 18080-18101. doi:10.3390/s150818080CastrillĂłn-Santan, M., Lorenzo-Navarro, J., & HernĂĄndez-Sosa, D. (2014). Conteo de personas con un sensor RGBD comercial. Revista Iberoamericana de AutomĂĄtica e InformĂĄtica Industrial RIAI, 11(3), 348-357. doi:10.1016/j.riai.2014.05.006Rincon JA, Julian V, Carrascosa C. An Emotional-based Hybrid Application for Human-Agent Societies. In: 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. vol. 368; 2015. p. 203–214.Rincon JA, Julian V, Carrascosa C. Applying a Social Emotional Model in Human-Agent Societies. In: Workshop WIHAS’15. Intelligent Human-Agent Societies  vol. 524 of CCIS; 2015. p. 377–388.Leccese, F., Cagnetti, M., & Trinca, D. (2014). A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and WiMAX. Sensors, 14(12), 24408-24424. doi:10.3390/s141224408Mateevitsi V, Haggadone B, Leigh J, Kunzer B, Kenyon RV. Sensing the environment through SpiderSense. In: Proceedings of the 4th Augmented Human International Conference. ACM; 2013. p. 51–57.Kavitha R, Thiyagarajan N. Distributed Intelligent Street Lamp Monitoring and Control System Based on Zigbee. International Journal of Science and Research (IJSR) PP; p. 2319–7064.Pan, M.-S., Yeh, L.-W., Chen, Y.-A., Lin, Y.-H., & Tseng, Y.-C. (2008). A WSN-Based Intelligent Light Control System Considering User Activities and Profiles. IEEE Sensors Journal, 8(10), 1710-1721. doi:10.1109/jsen.2008.2004294Villarrubia, G., De Paz, J., Bajo, J., & Corchado, J. (2014). Ambient Agents: Embedded Agents for Remote Control and Monitoring Using the PANGEA Platform. Sensors, 14(8), 13955-13979. doi:10.3390/s14081395

    Context-dependent regulation of conjunctival goblet cell function by allergic mediators

    Get PDF
    Producción CientíficaIn the eye, goblet cells responsible for secreting mucins are found in the conjunctiva. When mucin production is not tightly regulated several ocular surface disorders may occur. In this study, the effect of the T helper (Th) 2-type cytokines IL4, IL5, and IL13 on conjunctival goblet cell function was explored. Goblet cells from rat conjunctiva were cultured and characterized. The presence of cytokine receptors was confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Changes in intracellular [Ca2+], high molecular weight glycoconjugate secretion, and proliferation were measured after stimulation with Th2 cytokines with or without the allergic mediator histamine. We found that IL4 and IL13 enhance cell proliferation and, along with histamine, stimulate goblet cell secretion. We conclude that the high levels of IL4, IL5, and IL13 that characterize allergic conjunctivitis could be the reason for higher numbers of goblet cells and mucin overproduction found in this condition.National Institutes of Health (grant R01 EY019470)Ministerio de Economía y Competitividad - FEDER-CICYT (MAT2013−47501-C02-1-R
    • 

    corecore