827 research outputs found

    Fuzzy Logic Controlled Microturbine Generation System for Distributed Generation

    Get PDF
    AbstractThe microturbine based Distributed Generation (DG) system are becoming the popular source of power industries due to their fuel flexibility, reliability and power quality. The microturbine generation (MTG) system is a complicated thermodynamic electromechanical system with a high speed of rotation, frequency conversion and its control strategy. In spite of several techniques to control high speed of microturbine is not accurate and reliable due to their anti-interference problem. To resolve the anti-interfacing problem, this paper investigates the fuzzy logic based speed governor for a MTG system as an alternative to nominal PI or lead-lag based controller. The development of fuzzy logic based speed governor includes input and output membership function with their respective members. The load variation on MTG system is performed using conventional and fuzzy logic controller, implemented in Matlab/simulink and results are compared with each other. The simulation result shows that, the performance improvement of fuzzy logic governor over a nominal governor based MTG system

    Computerised control and data acquisition for corrosion experiments

    Get PDF
    Electrochemical measurement of corrosion involves imposition of electrical perterbation in the form of potential or current on the test specimen and measuring its response. A potentiostat is most frequently used for this purpose. The present paper describes a menu driven user friendly software developed for corrosion analysis by interfacing the potentiostat with PC-AT. The system was developed around a laboratory developed potentiostat and a PC/AT 486.The interface between the two was devel-oped using a PC plug in PCL 208A card with nominal speci-fications : AD 16 ch., DA 2ch, res 12 bits, max. frequency 100 KHz. The DA channels were modified for bipolar output and fine turfing of potential. Corrosion rates are measu-red by (i) linear polarisation, (ii) Tafel analysis and (iii) increasing pulse polarisation. The corrosion rate is calculated using Stern Greary equation with Rp measured from the polarisation data and known tafel slopes. Alterna-tively it is calculated using a nonlinear least square alg-orithm. Besides corrosion measurement the system is also used for other experiments like potentiodynamic polari-sation, pitting, cyclic voltametry, EPR and transients. The specification for the present system are : control potential range ±2V, resolution 0.488 mV, current sensit-ivity 0.1 uA, scan rate 0.26 uVlsec to 20 Vlsec, pulse potential 1.2 mV to 5V, pulse time 250 ms. to 72 mins. Completely arbitrary waveform can be generated and imposed on specimens. The software has facility for preview of potential wafeform, simultaneous display of acquired potential/current data, drawing of lines and tangents, data viewing and editing and calculation of different corrosion and electrochemical parameters

    Simple Pendulum Revisited

    Full text link
    We describe a 8085 microprocessor interface developed to make reliable time period measurements. The time period of each oscillation of a simple pendulum was measured using this interface. The variation of the time period with increasing oscillation was studied for the simple harmonic motion (SHM) and for large angle initial displacements (non-SHM). The results underlines the importance of the precautions which the students are asked to take while performing the pendulum experiment.Comment: 17 pages with 10 figure

    Depth distribution of radiation defects in irradiated diamonds by confocal Raman spectroscopy

    Get PDF
    Five colored diamonds were investigated. According to the results of the study by FTIR, UV-Vis-NIR and Photoluminescence spectroscopy, they are natural type Ia diamonds. The depth distribution of the color intensity was carried out by measuring the intensity of the PL peak at 741 nm (GR1 center) upon excitation by a laser with a wavelength of 633 nm of Raman Confocal microscope. To minimise the perturbation due to geometrical effects, defect distribution profiles were normalised with respect to diamond Raman peak intensity (691 nm) point by point.  For two diamonds, the intensity of the GR1 peak (741 nm) sharply decreased to a depth of 10 µm, and then became equal to the background level, which is typical for irradiation with alpha particles from natural sources like uranium. In other diamonds, the profiles vary slightly with depth, and the color intensity is close to uniform, which is for irradiation with accelerated electrons or neutrons. The source of radiation has not been determined. However, long duration radioactivity measurements of the diamonds suggested that neutrons were not used for colour centers production in the diamonds studied

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Upfront Biology-Guided Therapy in Diffuse Intrinsic Pontine Glioma: Therapeutic, Molecular, and Biomarker Outcomes from PNOC003

    Full text link
    PURPOSE PNOC003 is a multicenter precision medicine trial for children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG). PATIENTS AND METHODS Patients (3-25 years) were enrolled on the basis of imaging consistent with DIPG. Biopsy tissue was collected for whole-exome and mRNA sequencing. After radiotherapy (RT), patients were assigned up to four FDA-approved drugs based on molecular tumor board recommendations. H3K27M-mutant circulating tumor DNA (ctDNA) was longitudinally measured. Tumor tissue and matched primary cell lines were characterized using whole-genome sequencing and DNA methylation profiling. When applicable, results were verified in an independent cohort from the Children's Brain Tumor Network (CBTN). RESULTS Of 38 patients enrolled, 28 patients (median 6 years, 10 females) were reviewed by the molecular tumor board. Of those, 19 followed treatment recommendations. Median overall survival (OS) was 13.1 months [95% confidence interval (CI), 11.2-18.4] with no difference between patients who followed recommendations and those who did not. H3K27M-mutant ctDNA was detected at baseline in 60% of cases tested and associated with response to RT and survival. Eleven cell lines were established, showing 100% fidelity of key somatic driver gene alterations in the primary tumor. In H3K27-altered DIPGs, TP53 mutations were associated with worse OS (TP53mut 11.1 mo; 95% CI, 8.7-14; TP53wt 13.3 mo; 95% CI, 11.8-NA; P = 3.4e-2), genome instability (P = 3.1e-3), and RT resistance (P = 6.4e-4). The CBTN cohort confirmed an association between TP53 mutation status, genome instability, and clinical outcome. CONCLUSIONS Upfront treatment-naïve biopsy provides insight into clinically relevant molecular alterations and prognostic biomarkers for H3K27-altered DIPGs

    Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis

    Get PDF
    New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB
    corecore