149,531 research outputs found
Non-steroidal anti-inflammatory drugs—changes in prescribing may be warranted
No abstract available
Risk of acute myocardial infarction with nonselective non-steroidal anti-inflammatory drugs: a meta-analysis
The use of cyclo-oxygenase 2 selective nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with increased risk of acute myocardial infarction (AMI). The association between the risks of AMI with nonselective NSAIDs is less clear. We reviewed the published evidence and assessed the risk of AMI with nonselective NSAIDs. We performed a meta-analysis of all studies containing data from population databases that compared the risk of AMI in NSAID users with that in non-users or remote NSAID users. The primary outcome was objectively confirmed AMI. Fourteen studies met predefined criteria for inclusion in the meta-analysis. Nonselective NSAIDs as a class was associated with increased AMI risk (relative AMI risk 1.19, 95% confidence interval [CI] 1.08 to 1.31). Similar findings were found with diclofenac (relative AMI risk 1.38, 95% CI 1.22–1.57) and ibuprofen (relative AMI risk 1.11, 95% CI 1.06 to 1.17). However, this effect was not observed with naproxen (relative AMI risk 0.99, 95% CI 0.88–1.11). In conclusion, based on current evidence, there is a general direction of effect, which suggests that at least some nonselective NSAIDs increase AMI risk. Analysis based on the limited data available for individual NSAIDs, including diclofenac and ibuprofen, supported this finding; however, this was not the case for naproxen. Nonselective NSAIDs are frequently prescribed, and so further investigation into the risk of AMI is warranted because the potential for harm can be substantial
Optical properties of SiC nanotubes: A systematic study
The band structure and optical dielectric function of
single-walled zigzag
[(3,0),(4,0),(5,0),(6,0),(8,0),(9,0),(12,0),(16,0),(20,0),(24,0)], armchair
[(3,3),(4,4),(5,5),(8,8),(12,12),(15,15)], and chiral
[(4,2),(6,2),(8,4),(10,4)] SiC-NTs as well as the single honeycomb SiC sheet
have been calculated within DFT with the LDA. It is found that all the SiC
nanotubes are semiconductors, except the ultrasmall (3,0) and (4,0) zigzag
tubes which are metallic. Furthermore, the band gap of the zigzag SiC-NTs which
is direct, may be reduced from that of the SiC sheet to zero by reducing the
diameter (), though the band gap for all the SiC nanotubes with a diameter
larger than ~20 \AA is almost independent of diameter. For the electric
field parallel to the tube axis (), the for
all the SiC-NTs with a moderate diameter (say, 8 \AA) in the
low-energy region (0~6 eV) consists of a single distinct peak at ~3 eV.
However, for the small diameter SiC nanotubes such as the (4,2),(4,4) SiC-NTs,
the spectrum does deviate markedly from this general behavior. In
the high-energy region (from 6 eV upwards), the for all the
SiC-NTs exhibit a broad peak centered at ~7 eV. For the electric field
perpendicular to the tube axis (), the spectrum of
all the SiC-NTs except the (4,4), (3,0) and (4,0) nanotubes, in the low energy
region also consists of a pronounced peak at around 3 eV whilst in the
high-energy region is roughly made up of a broad hump starting from 6 eV. The
magnitude of the peaks is in general about half of the magnitude of the
corresponding ones for
Adsorption, Segregation and Magnetization of a Single Mn Adatom on the GaAs (110) Surface
Density functional calculations with a large unit cell have been conducted to
investigate adsorption, segregation and magnetization of Mn monomer on
GaAs(110). The Mn adatom is rather mobile along the trench on GaAs(110), with
an energy barrier of 0.56 eV. The energy barrier for segregation across the
trenches is nevertheless very high, 1.67 eV. The plots of density of states
display a wide gap in the majority spin channel, but show plenty of
metal-induced gap states in the minority spin channel. The Mn atoms might be
invisibl in scanning tunneling microscope (STM) images taken with small biases,
due to the directional p-d hybridization. For example, one will more likely see
two bright spots on Mn/GaAs(110), despite the fact that there is only one Mn
adatom in the system
Aqua MODIS Electronic Crosstalk on SMWIR Bands 20 to 26
Aqua MODIS Moon images obtained with bands 20 to 26 (3.66 - 4.55 and 1.36 -
1.39 m) during scheduled lunar events show evidence of electronic
crosstalk contamination of the response of detector 1. In this work, we
determined the sending bands for each receiving band. We found that the
contaminating signal originates, in all cases, from the detector 10 of the
corresponding sending band and that the signals registered by the receiving and
sending detectors are always read out in immediate sequence. We used the lunar
images to derive the crosstalk coefficients, which were then applied in the
correction of electronic crosstalk striping artifacts present in L1B images,
successfully restoring product quality.Comment: Accepted to be published in the IEEE 2017 International Geoscience &
Remote Sensing Symposium (IGARSS 2017), scheduled for July 23-28, 2017 in
Fort Worth, Texas, US
Two-dimensional Poisson Trees converge to the Brownian web
The Brownian web can be roughly described as a family of coalescing
one-dimensional Brownian motions starting at all times in and at all
points of . It was introduced by Arratia; a variant was then studied by
Toth and Werner; another variant was analyzed recently by Fontes, Isopi, Newman
and Ravishankar. The two-dimensional \emph{Poisson tree} is a family of
continuous time one-dimensional random walks with uniform jumps in a bounded
interval. The walks start at the space-time points of a homogeneous Poisson
process in and are in fact constructed as a function of the point
process. This tree was introduced by Ferrari, Landim and Thorisson. By
verifying criteria derived by Fontes, Isopi, Newman and Ravishankar, we show
that, when properly rescaled, and under the topology introduced by those
authors, Poisson trees converge weakly to the Brownian web.Comment: 22 pages, 1 figure. This version corrects an error in the previous
proof. The results are the sam
Robust active magnetic dearing control using stabilizing dynamical compensators
The robust control of active magnetic bearings, based on a linearised interval model, is considered. Through robust stability analysis, all the first-order robust stabilizing dynamical compensators for the interval system are obtained. Disturbance attenuation and minimum control effort are also addressed. The approach is applied to a high-speed flywheel supported by two active and two passive magnetic bearings. Simulation and experimental results both show that it is simple, effective, and robust
Robust magnetic bearing control using stabilizing dynamical compensators
Abstract—This paper considers the robust control of an active radial magnetic bearing system, having a homopolar, external rotor topology, which is used to support an annular fiber composite flywheel rim. A first-order dynamical compensator, which uses only position feedback information, is used for control, its design being based on a linearized one-dimensional second-order model which is treated as an interval system in order to cope with parameter uncertainties. Through robust stability analysis, a parameterization of all first-order robustly stabilizing dynamical compensators for the interval system is initially obtained. Then, by appropriate selection of the free parameters in the robust controller, the H2 norm of the disturbance-output transfer function is made arbitrarily small over the system parameter intervals, and the norm of the input–output transfer function is made arbitrarily close to a lower bound. Simulation and experimental
results demonstrate both stability and performance robustness of the developed controller
Intrinsic electron-doping in nominal "non-doped" superconducting (La,Y)CuO thin films grown by dc magnetron sputtering
The superconducting nominal "non-doped" (LYCO) thin
films are successfully prepared by dc magnetron-sputtering and in situ
post-annealing in vacuum. The best more than 13K is achieved in the
optimal LYCO films with highly pure c-axis oriented T'-type structure. In the
normal state, the quasi-quadratic temperature dependence of resistivity, the
negative Hall coefficient and effect of oxygen content in the films are quite
similar to the typical Ce-doped T'-214 cuprates, suggesting that T'-LYCO shows
the electron-doping nature like known n-type cuprates, and is not a band
superconductor as proposed previously. The charge carriers are considered to be
induced by oxygen deficiency.Comment: 5 pages, 7 figure
- …