21,493 research outputs found

    Mode-matching analysis of a shielded rectangular dielectric-rod waveguide

    Get PDF
    Rectangular cross-section dielectric waveguides are widely used at millimeter wavelengths. In addition, shielded dielectric resonators having a square cross-section are often used as filter elements, however there is almost no information available on the effect of the shield. Rectangular or square dielectric waveguide is notoriously difficult to analyze, because of the singular behaviour of the fields at the corners. Most published analyses are for materials with a low dielectric constant, and do not include the effects of a shield. This paper describes a numerically efficient mode matching method for the analysis of shielded dielectric rod waveguide, which is applicable to both low and high dielectric constant materials. The effect of the shield on the propagation behaviour is studied. The shield dimensions may be selected such that the shield has a negligible effect, so that results can be compared with free space data. The results are verified by comparison with several sets of published data, and have been confirmed by measurement for a nominal 'e' r of 37.4

    Surveyor lunar touchdown stability study Final report, Jul. 1965 - Jul. 1966

    Get PDF
    Dynamic analysis and computer simulation of Surveyor lunar landing stabilit

    Method of fan sound mode structure determination computer program user's manual: Modal calculation program

    Get PDF
    A computer user's manual describing the operation and the essential features of the Modal Calculation Program is presented. The modal Calculation Program calculates the amplitude and phase of modal structures by means of acoustic pressure measurements obtained from microphones placed at selected locations within the fan inlet duct. In addition, the Modal Calculation Program also calculates the first-order errors in the modal coefficients that are due to tolerances in microphone location coordinates and inaccuracies in the acoustic pressure measurements

    Method of fan sound mode structure determination computer program user's manual: Microphone location program

    Get PDF
    A computer user's manual describing the operation and the essential features of the microphone location program is presented. The Microphone Location Program determines microphone locations that ensure accurate and stable results from the equation system used to calculate modal structures. As part of the computational procedure for the Microphone Location Program, a first-order measure of the stability of the equation system was indicated by a matrix 'conditioning' number

    Method of fan sound mode structure determination

    Get PDF
    A method for the determination of fan sound mode structure in the Inlet of turbofan engines using in-duct acoustic pressure measurements is presented. The method is based on the simultaneous solution of a set of equations whose unknowns are modal amplitude and phase. A computer program for the solution of the equation set was developed. An additional computer program was developed which calculates microphone locations the use of which results in an equation set that does not give rise to numerical instabilities. In addition to the development of a method for determination of coherent modal structure, experimental and analytical approaches are developed for the determination of the amplitude frequency spectrum of randomly generated sound models for use in narrow annulus ducts. Two approaches are defined: one based on the use of cross-spectral techniques and the other based on the use of an array of microphones

    An Economic Evaluation of Precision Deep Tillage Practices through the Analysis of Comparative Enterprise Budgets

    Get PDF
    Precision deep tillage allows for lower use of tillage though recognized variation with in a field. Comparative enterprise budgets, breakeven, and sensitivity analysis were preformed to prove that under long-term no-till conditions precision deep tillage can be a profitable form of tillage that will enter an optimal producer strategy.Farm Management,

    PeV-Scale Supersymmetry

    Full text link
    Although supersymmetry has not been seen directly by experiment, there are powerful physics reasons to suspect that it should be an ingredient of nature and that superpartner masses should be somewhat near the weak scale. I present an argument that if we dismiss our ordinary intuition of finetuning, and focus entirely on more concrete physics issues, the PeV scale might be the best place for supersymmetry. PeV-scale supersymmetry admits gauge coupling unification, predicts a Higgs mass between 125 GeV and 155 GeV, and generally disallows flavor changing neutral currents and CP violating effects in conflict with current experiment. The PeV scale is motivated independently by dark matter and neutrino mass considerations.Comment: 5 RevTex page

    Orbital surveys and state resource management

    Get PDF
    The resource management implications of satellite earth resource surveys for the state of Ohio are discussed. Discussions cover environmental problems, planning future developments, and short- and long-range benefits of such resource management

    The Adiabatic Invariance of the Action Variable in Classical Dynamics

    Get PDF
    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well-known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of explicit calculations for the harmonic oscillator. The new proof makes essential use of the Hamiltonian formalism. The key step is the introduction of a slowly-varying quantity closely related to the action variable. This new quantity arises naturally within the Hamiltonian framework as follows: a canonical transformation is first performed to convert the system to action-angle coordinates; then the new quantity is constructed as an action integral (effectively a new action variable) using the new coordinates. The integration required for this construction provides, in a natural way, the averaging procedure introduced in other proofs, though here it is an average in phase space rather than over time.Comment: 8 page
    corecore