52,189 research outputs found

    Spectroscopic investigations of plasma properties quarterly summary report no. 2, 11 aug. - 10 nov. 1964

    Get PDF
    Performance of plasma source operated with helium - intensity and temperature profiles of source electronic instrumentation for detecting weak spectrum line

    Evidence for charged critical behavior in the pyrochlore superconductor RbOs2O6

    Full text link
    We analyze magnetic penetration depth data of the recently discovered superconducting pyrochlore oxide RbOs2O6. Our results strongly suggest that in RbOs2O6 charged critical fuctuations dominate the temperature dependence of the magnetic penetration depth near Tc. This is in contrast to the mean-field behavior observed in conventional superconductors and the uncharged critical behavior found in nearly optimally doped cuprate superconductors. However, this finding agrees with the theoretical predictions for charged criticality and the charged criticality observed in underdoped YBa2Cu3O6.59.Comment: 5 pages, 4 figure

    Experimental probing of the anisotropy of the empty p states near the Fermi level in MgB2

    Full text link
    We have studied the Boron K-edge in the superconductor MgB2 by electron energy loss spectroscopy (EELS) and experimentally resolved the empty p states at the Fermi level that have previously been observed within an energy window of 0.8eV by soft x-ray absorption spectroscopy. Using angular resolved EELS, we find that these states at the immediate edge onset have pxy character in agreement with predictions from first-principle electronic structure calculations.Comment: 15 pages, 5 figure

    Using neural networks for high-speed blood cell classification in a holographic-microscopy flow-cytometry system

    Get PDF
    High-throughput cell sorting with flow cytometers is an important tool in modern clinical cell studies. Most cytometers use biomarkers that selectively bind to the cell, but induce significant changes in morphology and inner cell processes leading sometimes to its death. This makes label-based cell sorting schemes unsuitable for further investigation. We propose a label-free technique that uses a digital inline holographic microscopy for cell imaging and an integrated, optical neural network for high-speed classification. The perspective of dense integration makes it attractive to ultrafast, large-scale cell sorting. Network simulations for a ternary classification task (monocytes/granulocytes/lymphocytes) resulted in 89% accuracy

    Curvature representation of the gonihedric action

    Get PDF
    We analyse the curvature representation of the gonihedric action A(M)A(M) for the cases when the dependence on the dihedral angle is arbitrary.Comment: 10 pages, LaTeX, 3 embedded figures with psfig, submitted to Phys.Lett.

    Implications of the isotope effects on the magnetization, magnetic torque and susceptibility

    Full text link
    We analyze the magnetization, magnetic torque and susceptibility data of La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal 3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that on the anisotropy. Invoking the generic behavior of the anisotropy the doping dependence of the isotope effects on the critical properties, including Tc, correlation lengths and magnetic penetration depths are traced back to a change of the mobile carrier concentration.Comment: 5 pages, 3 figure

    Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    Get PDF
    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyse the evolution of stellar mass functions of coeval main sequence stars including all relevant aspects of single- and binary-star evolution. We show that the slope of the upper part of the mass function in a stellar cluster can be quite different to the slope of the initial mass function. Wind mass loss from massive stars leads to an accumulation of stars which is visible as a peak at the high mass end of mass functions, thereby flattening the mass function slope. Mass accretion and mergers in close binary systems create a tail of rejuvenated binary products. These blue straggler stars extend the single star mass function by up to a factor of two in mass and can appear up to ten times younger than their parent stellar cluster. Cluster ages derived from their most massive stars that are close to the turn-off may thus be significantly biased. To overcome such difficulties, we propose the use of the binary tail of stellar mass functions as an unambiguous clock to derive the cluster age because the location of the onset of the binary tail identifies the cluster turn-off mass. It is indicated by a pronounced jump in the mass function of old stellar populations and by the wind mass loss peak in young stellar populations. We further characterise the binary induced blue straggler population in star clusters in terms of their frequency, binary fraction and apparent age.Comment: 21 pages, 22 figures, accepted for publication in Ap
    • …
    corecore