3,359 research outputs found
Heat capacity uncovers physics of a frustrated spin tube
We report on refined experimental results concerning the low-temperature
specific heat of the frustrated spin tube material [(CuCl2tachH)3Cl]Cl2. This
substance turns out to be an unusually perfect spin tube system which allows to
study the physics of quasi-one dimensional antiferromagnetic structures in
rather general terms. An analysis of the specific heat data demonstrates that
at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid
behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg
chain with short-range exchange interactions. On the other hand, at somewhat
elevated temperatures the composite spin structure of the chain is revealed
through a Schottky-type peak in the specific heat located around 2 K. We argue
that the dominating contribution to the peak originates from gapped magnon-type
excitations related to the internal degrees of freedom of the rung spins.Comment: 4+ pages, 6 figure
A two dimensional model for ferromagnetic martensites
We consider a recently introduced 2-D square-to-rectangle martensite model
that explains several unusual features of martensites to study ferromagnetic
martensites. The strain order parameter is coupled to the magnetic order
parameter through a 4-state clock model. Studies are carried out for several
combinations of the ordering of the Curie temperatures of the austenite and
martensite phases and, the martensite transformation temperature. We find that
the orientation of the magnetic order which generally points along the short
axis of the rectangular variant, changes as one crosses the twin or the
martensite-austenite interface. The model shows the possibility of a subtle
interplay between the growth of strain and magnetic order parameters as the
temperature is decreased. In some cases, this leads to qualitatively different
magnetization curves from those predicted by earlier mean field models.
Further, we find that strain morphology can be substantially altered by the
magnetic order. We have also studied the dynamic hysteresis behavior.
The corresponding dissipation during the forward and reverse cycles has
features similar to the Barkhausen's noise.Comment: 9 pages, 11 figure
Experimental observation of Frohlich superconductivity in high magnetic fields
Resistivity and irreversible magnetisation data taken within the
high-magnetic-field CDWx phase of the quasi-two-dimensional organic metal
alpha-(BEDT-TTF)2KHg(SCN)4 are shown to be consistent with a field-induced
inhomogeneous superconducting phase. In-plane skin-depth measurements show that
the resistive transition on entering the CDWx phase is both isotropic and
representative of the bulk.Comment: ten pages, four figure
Linear approach to the orbiting spacecraft thermal problem
We develop a linear method for solving the nonlinear differential equations
of a lumped-parameter thermal model of a spacecraft moving in a closed orbit.
Our method, based on perturbation theory, is compared with heuristic
linearizations of the same equations. The essential feature of the linear
approach is that it provides a decomposition in thermal modes, like the
decomposition of mechanical vibrations in normal modes. The stationary periodic
solution of the linear equations can be alternately expressed as an explicit
integral or as a Fourier series. We apply our method to a minimal thermal model
of a satellite with ten isothermal parts (nodes) and we compare the method with
direct numerical integration of the nonlinear equations. We briefly study the
computational complexity of our method for general thermal models of orbiting
spacecraft and conclude that it is certainly useful for reduced models and
conceptual design but it can also be more efficient than the direct integration
of the equations for large models. The results of the Fourier series
computations for the ten-node satellite model show that the periodic solution
at the second perturbative order is sufficiently accurate.Comment: 20 pages, 11 figures, accepted in Journal of Thermophysics and Heat
Transfe
Effect of strong localization of doped holes in angle-resolved photoemission spectra of LaSrFeO
We have performed an angle-resolved photoemission spectroscopy study of
LaSrFeO using {\it in situ} prepared thin films and
determined its band structure. The experimental band dispersions could be well
explained by an empirical band structure assuming the G-type antiferromagnetic
state. However, the Fe 3d bands were found to be shifted downward relative to
the Fermi level () by eV compared with the calculation and to
form a (pseudo)gap of eV at . We attribute this observation to a
strong localization effect of doped holes due to polaron formation.Comment: 5 pages, 5 figure
Simulations of Spinodal Nucleation in Systems with Elastic Interactions
Systems with long-range interactions quenched into a metastable state near
the pseudospinodal exhibit nucleation that is qualitatively different than the
classical nucleation observed near the coexistence curve. We have observed
nucleation droplets in our Langevin simulations of a two-dimensional model of
martensitic transformations and have determined that the structure of the
nucleating droplet differs from the stable martensite structure. Our results,
together with experimental measurements of the phonon dispersion curve, allow
us to predict the nature of the droplet. These results have implications for
nucleation in many solid-solid transitions and the structure of the final
state
Resonant electron transmission through a finite quantum spin chain
Electron transport in a finite one dimensional quantum spin chain (with
ferromagnetic exchange) is studied within an exchange Hamiltonian. Spin
transfer coefficients strongly depend on the sign of the exchange
constant. For a ferromagnetic coupling, they exhibit a novel resonant pattern,
reflecting the salient features of the combined electron-spin system. Spin-flip
processes are inelastic and feasible at finite voltage or at finite
temperature.Comment: 4 pages including 4 .eps figure
Tweed in Martensites: A Potential New Spin Glass
We've been studying the ``tweed'' precursors above the martensitic transition
in shape--memory alloys. These characteristic cross--hatched modulations occur
for hundreds of degrees above the first--order shape--changing transition. Our
two--dimensional model for this transition, in the limit of infinite elastic
anisotropy, can be mapped onto a spin--glass Hamiltonian in a random field. We
suggest that the tweed precursors are a direct analogy of the spin--glass
phase. The tweed is intermediate between the high--temperature cubic phase and
the low--temperature martensitic phase in the same way as the spin--glass phase
can be intermediate between ferromagnet and antiferromagnet.Comment: 18 pages and four figures (included
Activated macrophages promote Wnt signalling through tumour necrosis factor-α in gastric tumour cells
The activation of Wnt/β-catenin signalling has an important function in gastrointestinal tumorigenesis. It has been suggested that the promotion of Wnt/β-catenin activity beyond the threshold is important for carcinogenesis. We herein investigated the role of macrophages in the promotion of Wnt/β-catenin activity in gastric tumorigenesis. We found β-catenin nuclear accumulation in macrophage-infiltrated dysplastic mucosa of the K19-Wnt1 mouse stomach. Moreover, macrophage depletion in ApcΔ716 mice resulted in the suppression of intestinal tumorigenesis. These results suggested the role of macrophages in the activation of Wnt/β-catenin signalling, which thus leads to tumour development. Importantly, the conditioned medium of activated macrophages promoted Wnt/β-catenin signalling in gastric cancer cells, which was suppressed by the inhibition of tumour necrosis factor (TNF)-α. Furthermore, treatment with TNF-α induced glycogen synthase kinase 3β (GSK3β) phosphorylation, which resulted in the stabilization of β-catenin. We also found that Helicobacter infection in the K19-Wnt1 mouse stomach caused mucosal macrophage infiltration and nuclear β-catenin accumulation. These results suggest that macrophage-derived TNF-α promotes Wnt/β-catenin signalling through inhibition of GSK3β, which may contribute to tumour development in the gastric mucosa
- …