40 research outputs found

    EC 10246−2707: an eclipsing subdwarf B + M dwarf binary★

    Get PDF
    We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary, EC 10246-2707, and present multi-colour photometric and spectroscopic observations of this system. Similar to other HW Vir-type binaries, the light curve shows both primary and secondary eclipses, along with a strong reflection effect from the M dwarf; no intrinsic light contribution is detected from the cool companion. The orbital period is 0.118 507 993 6 ± 0.000 000 000 9 days, or about three hours. Analysis of our time- series spectroscopy reveals a velocity semi-amplitude of K1 = 71.6 ± 1.7 km s−1 for the sdB and best-fitting atmospheric parameters of Teff = 28900 ± 500 K, log g = 5.64 ± 0.06, and log N(He)/N(H) = -2.5 ± 0.2. Although we cannot claim a unique solution from modeling the light curve, the best–fitting model has an sdB mass of 0.45 M⊙ and a cool companion mass of 0.12 M⊙. These results are roughly consistent with a canonical–mass sdB and M dwarf separated by a ∌ 0.84 R⊙. We find no evidence of pulsations in the light curve and limit the amplitude of rapid photometric oscillations to 7.2×10−12. If EC 10246- 2707 evolves into a cataclysmic variable, its period should fall below the famous CV period gap

    EC 10246-2707: a new eclipsing sdB + M dwarf binary⋆

    Get PDF
    We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary, EC 10246-2707, and present multi-colour photometric and spectroscopic observations of this system. Similar to other HW Vir-type binaries, the light curve shows both primary and secondary eclipses, along with a strong reflection effect from the M dwarf; no intrinsic light contribution is detected from the cool companion. The orbital period is 0.118 507 993 6 ± 0.000 000 000 9 days, or about three hours. Analysis of our time- series spectroscopy reveals a velocity semi-amplitude of K1 = 71.6 ± 1.7 km s−1 for the sdB and best-fitting atmospheric parameters of Teff = 28900 ± 500 K, log g = 5.64 ± 0.06, and log N(He)/N(H) = -2.5 ± 0.2. Although we cannot claim a unique solution from modeling the light curve, the best–fitting model has an sdB mass of 0.45 M⊙ and a cool companion mass of 0.12 M⊙. These results are roughly consistent with a canonical–mass sdB and M dwarf separated by a ∌ 0.84 R⊙. We find no evidence of pulsations in the light curve and limit the amplitude of rapid photometric oscillations to < 0.08%. Using 15 years of eclipse timings, we construct an O-C diagram but find no statistically significant period changes; we rule out | ˙P | > 7.2×10−12. If EC 10246- 2707 evolves into a cataclysmic variable, its period should fall below the famous CV period gap.Web of Scienc

    Evidence for Diffuse Central Retinal Edema In Vivo in Diabetic Male Sprague Dawley Rats

    Get PDF
    Background: Investigations into the mechanism of diffuse retinal edema in diabetic subjects have been limited by a lack of animal models and techniques that co-localized retinal thickness and hydration in vivo. In this study we test the hypothesis that a previously reported supernormal central retinal thickness on MRI measured in experimental diabetic retinopathy in vivo represents a persistent and diffuse edema. Methodology/Principal Findings: In diabetic and age-matched control rats, and in rats experiencing dilutional hyponatremia (as a positive edema control), whole central retinal thickness, intraretinal water content and apparent diffusion coefficients (ADC, ‘water mobility’) were measured in vivo using quantitative MRI methods. Glycated hemoglobin and retinal thickness ex vivo (histology) were also measured in control and diabetic groups. In the dilutional hyponatremia model, central retinal thickness and water content were supernormal by quantitative MRI, and intraretinal water mobility profiles changed in a manner consistent with intracellular edema. Groups of diabetic (2, 3, 4, 6, and 9 mo of diabetes), and age-matched controls were then investigated with MRI and all diabetic rats showed supernormal whole central retinal thickness. In a separate study in 4 mo diabetic rats (and controls), MRI retinal thickness and water content metrics were significantly greater than normal, and ADC was subnormal in the outer retina; the increase in retinal thickness was not detected histologically on sections of fixed and dehydrated retinas from these rats

    Comparative Analysis of Bispecific Antibody and Streptavidin-Targeted Radioimmunotherapy for B-cell Cancers

    No full text
    Streptavidin (SA)-biotin pretargeted radioimmunotherapy (PRIT) that targets CD20 in non-Hodgkin lymphoma (NHL) exhibits remarkable efficacy in model systems, but SA immunogenicity and interference by endogenous biotin may complicate clinical translation of this approach. In this study, we engineered a bispecific fusion protein (FP) that evades the limitations imposed by this system. Briefly, one arm of the FP was an anti-human CD20 antibody (2H7), with the other arm of the FP an anti-chelated radiometal trap for a radiolabeled ligand (yttrium[Y]-DOTA) captured by a very high-affinity anti-Y-DOTA scFv antibody (C825). Head-to-head biodistribution experiments comparing SA-biotin and bispecific FP (2H7-Fc-C825) PRIT in murine subjects bearing human lymphoma xenografts demonstrated nearly identical tumor targeting by each modality at 24 hours. However, residual radioactivity in the blood and normal organs was consistently higher following administration of 1F5-SA compared with 2H7-Fc-C825. Consequently, tumor-to-normal tissue ratios of distribution were superior for 2H7-Fc-C825 (P < 0.0001). Therapy studies in subjects bearing either Ramos or Granta subcutaneous lymphomas demonstrated that 2H7-Fc-C825 PRIT is highly effective and significantly less myelosuppressive than 1F5-SA (P < 0.0001). All animals receiving optimal doses of 2H7-Fc-C825 followed by 90Y-DOTA were cured by 150 days, whereas the growth of tumors in control animals progressed rapidly with complete morbidity by 25 days. In addition to demonstrating reduced risk of immunogenicity and an absence of endogenous biotin interference, our findings offer a preclinical proof of concept for the preferred use of bispecific PRIT in future clinical trials, due to a slightly superior biodistribution profile, less myelosuppression, and superior efficacy

    Therapy of Myeloid Leukemia using Novel Bispecific Fusion Proteins Targeting CD45 and 90 Y-DOTA

    No full text
    © 2020 American Association for Cancer Research. Pretargeted radioimmunotherapy (PRIT) has been investigated as a multi-step approach to decrease relapse and toxicity for high-risk acute myeloid leukemia (AML). Relevant factors including endogenous biotin and immunogenicity, however, have limited the use of PRIT with an anti-CD45 antibody streptavidin conjugate and radiolabeled DOTA-biotin. To overcome these limitations we designed anti-murine and anti-human CD45 bispecific antibody constructs using 30F11 and BC8 antibodies, respectively, combined with an anti-yttrium (Y)-DOTA single-chain variable fragment (C825) to capture a radiolabeled ligand. The bispecific construct targeting human CD45 (BC8-Fc-C825) had high uptake in leukemia HEL xenografts [7.8 = 0.02% percent injected dose/gram of tissue (% ID/g)]. Therapy studies showed that 70% of mice with HEL human xenografts treated with BC8-Fc-C825 followed by 44.4 MBq (1,200 mCi) of 90Y-DOTA-biotin survived at least 170 days after therapy, while all nontreated controls required euthanasia because of tumor progression by day 32. High uptake at sites of leukemia (spleen and bone marrow) was also seen with 30F11-IgG1-C825 in a syngeneic disseminated SJL murine leukemia model (spleen, 9.0 = 1.5% ID/g and bone marrow, 8.1 = 1.2% ID/g), with minimal uptake in all other normal organs (<0.5% ID/g) at 24 hours after 90Y-DOTA injections. SJL leukemia mice treated with the bispecific 30F11-IgG1-C825 and 29.6 MBq (800 mCi) of 90Y-DOTA-biotin had a survival advantage compared with untreated leukemic mice (median, 43 vs. 30 days, respectively; P < 0.0001). These data suggest bispecific antibody–mediated PRIT may be highly effective for leukemia therapy and translation to human studies
    corecore