8,839 research outputs found
The bearable lightness of being
How are philosophical questions about what kinds of things there are to be understood and how are they to be answered? This paper defends broadly Fregean answers to these questions. Ontological categories-such as object, property, and relation-are explained in terms of a prior logical categorization of expressions, as singular terms, predicates of varying degree and level, etc. Questions about what kinds of object, property, etc., there are are, on this approach, reduce to questions about truth and logical form: for example, the question whether there are numbers is the question whether there are true atomic statements in which expressions function as singular terms which, if they have reference at all, stand for numbers, and the question whether there are properties of a given type is a question about whether there are meaningful predicates of an appropriate degree and level. This approach is defended against the objection that it must be wrong because makes what there depend on us or our language. Some problems confronting the Fregean approach-including Frege's notorious paradox of the concept horse-are addressed. It is argued that the approach results in a modest and sober deflationary understanding of ontological commitments
Flame zone of a composite propellant expanded by a laser source
Technique scales flame structure linearly with gas kinetic mean free path, which increases two to three orders of magnitude as pressure decreases like amount. Kinetic and transport time scales expand in proportion so that regression rates for laser-induced flames are two to three orders of magnitude slower
BiSON data preparation: A correction for differential extinction and the weighted averaging of contemporaneous data
The Birmingham Solar Oscillations Network (BiSON) has provided high-quality
high-cadence observations from as far back in time as 1978. These data must be
calibrated from the raw observations into radial velocity and the quality of
the calibration has a large impact on the signal-to-noise ratio of the final
time series. The aim of this work is to maximise the potential science that can
be performed with the BiSON data set by optimising the calibration procedure.
To achieve better levels of signal-to-noise ratio we perform two key steps in
the calibration process: we attempt a correction for terrestrial atmospheric
differential extinction; and the resulting improvement in the calibration
allows us to perform weighted averaging of contemporaneous data from different
BiSON stations. The improvements listed produce significant improvement in the
signal-to-noise ratio of the BiSON frequency-power spectrum across all
frequency ranges. The reduction of noise in the power spectrum will allow
future work to provide greater constraint on changes in the oscillation
spectrum with solar activity. In addition, the analysis of the low-frequency
region suggests we have achieved a noise level that may allow us to improve
estimates of the upper limit of g-mode amplitudes.Comment: Accepted for publication in MNRAS; 10 pages, 7 figure
Performance of the Birmingham Solar-Oscillations Network (BiSON)
The Birmingham Solar-Oscillations Network (BiSON) has been operating with a
full complement of six stations since 1992. Over 20 years later, we look back
on the network history. The meta-data from the sites have been analysed to
assess performance in terms of site insolation, with a brief look at the
challenges that have been encountered over the years. We explain how the
international community can gain easy access to the ever-growing dataset
produced by the network, and finally look to the future of the network and the
potential impact of nearly 25 years of technology miniaturisation.Comment: 31 pages, 19 figures. Accepted by Solar Physics: 2015 October 20.
First online: 2015 December 7. Open Acces
Composite solid propellant flame microstructure determination Annual report, 23 Jun. 1967 - 22 Jun. 1968
Composite solid propellant flame microstructure determination
Quantum Monte Carlo calculations of neutron-alpha scattering
We describe a new method to treat low-energy scattering problems in
few-nucleon systems, and we apply it to the five-body case of neutron-alpha
scattering. The method allows precise calculations of low-lying resonances and
their widths. We find that a good three-nucleon interaction is crucial to
obtain an accurate description of neutron-alpha scattering.Comment: 4 pages, 2 figures, submitted to Physical Review Letter
Measurements at low energies of the polarization-transfer coefficient Kyy' for the reaction 3H(p,n)3He at 0 degrees
Measurements of the transverse polarization coefficient Kyy' for the reaction
3H(p,n)3He are reported for outgoing neutron energies of 1.94, 5.21, and 5.81
MeV. This reaction is important both as a source of polarized neutrons for
nuclear physics experiments, and as a test of theoretical descriptions of the
nuclear four-body system. Comparison is made to previous measurements,
confirming the 3H(p,n)3He reaction can be used as a polarized neutron source
with the polarization known to an accuracy of approximately 5%. Comparison to
R-matrix theory suggests that the sign of the 3F3 phase-shift parameter is
incorrect. Changing the sign of this parameter dramatically improves the
agreement between theory and experiment.Comment: 12 pages, RevTeX, 5 eps figures, submitted to Phys. Rev.
The Sun in transition? Persistence of near-surface structural changes through Cycle 24
We examine the frequency shifts in low-degree helioseismic modes from the
Birmingham Solar-Oscillations Network (BiSON) covering the period from 1985 -
2016, and compare them with a number of global activity proxies well as a
latitudinally-resolved magnetic index. As well as looking at frequency shifts
in different frequency bands, we look at a parametrization of the shift as a
cubic function of frequency. While the shifts in the medium- and highfrequency
bands are very well correlated with all of the activity indices (with the best
correlation being with the 10.7 cm radio flux), we confirm earlier findings
that there appears to have been a change in the frequency response to activity
during solar cycle 23, and the low frequency shifts are less correlated with
activity in the last two cycles than they were in Cycle 22. At the same time,
the more recent cycles show a slight increase in their sensitivity to activity
levels at medium and higher frequencies, perhaps because a greater proportion
of activity is composed of weaker or more ephemeral regions. This lends weight
to the speculation that a fundamental change in the nature of the solar dynamo
may be in progress.Comment: 9 pages, 6 figures. Accepted by MNRAS 24 May 201
- …