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ABSTRACT 
We extend our own previous applications of the microscopic coupled-cluster method 
(CCM) to quantum antiferromagnets. In particular, we carry out a systematic calculation 
involving high-order multispin correlations for the spin- f anisotropic Heisenberg models 
on the one-dimensional chain and the two-dimensional square lattice. Their ground-state 
properties are obtained as functions of the anisotropy parameter. Our CCM analysis not 
only produces accurate results for such physical quantities as the ground-state energy 
which are comparable to the best results from other techniques, but it also enables us to 
study the quantum phase transitions of the spin models in a systematic and unbiased 
manner. 0 1996 John Wiley & Sons, Inc. 

1 .  Introduction 

he microscopic coupled-cluster method (CCM) T was developed some 35 years ago to deal 
with many-body correlations in atomic nuclei [l]. 
Somewhat later, it was independently formulated 
for calculations of the electronic correlation energy 
in atoms and molecules [2], and, thereafter, the 
method quickly became one of the most popular 
techniques in theoretical quantum chemistry. 
Nowadays, the CCM is widely applied by chemists 
as a method of first choice for dealing with elec- 
tronic correlations, due to both its power and ver- 

satility, and great accuracy attainable from it within 
practical levels of implementation [3]. 

In physics, the number of applications of the 
CCM is also enormous [4]. The last few years, in 
particular, have witnessed considerable progress 
in applications of the CCM to various lattice Hamil- 
tonian systems. These include quantum spin-lattice 
systems [5-81, lattice gauge field theory [9, 101, 
and electronic Hubbard models [ll, 121, etc. In 
particular, several systematic approximation 
schemes specially tailored for lattice systems have 
been developed by us [ 6,8]. The efficiency of these 
approximation schemes has been well tested in all 
of our previous applications [6, 8, 91. 

In this article, we extend our earlier work [6, 81 

International Journal of Quantum Chemistry, Vol. 57, 919-927 (1996) 
0 1996 John Wiley & Sons, Inc. CCC 0020-7608 I 96 I 05091 9-09 



BISHOP, HALE, AND XlAN 

for the spin-$ anisotropic Heisenberg models 
on the one-dimensional ( 1 ~ )  chain and the two- 
dimensional (2D) square lattice. We can now in- 
clude multispin correlations of a very high order 
by employing computer-algebraic techniques to 
derive the resulting sets of coupled equations for 
the cluster correlation coefficients. We note that 
the 1~ spin-i model is exactly solvable by the 
Bethe ansatz 1131 and therefore provides a strin- 
gent test for our CCM analysis. Despite the fact that 
all our calculations have been done on a micro- 
computer, the numerical results that we obtain are 
already very impressive indeed when compared 
with the best of the Monte Carlo calculations 
114-161 and the results from series expansion tech- 
niques [171, both of which are very much more 
computationally intensive. A further advantage of 
our cm analysis lies in the fact that the coupled 
sets of many-body equations are derived and 
solved as explicit functions of the anisotropy pa- 
rameter. This enables us to study, in a very sys- 
tematic and unbiased manner, the possibility of 
quantum phase transitions which are usually re- 
vealed by the appearance of singular behavior in 
the anisotropic susceptibility (i.e., the second-order 
derivative of the ground-state energy with respect 
to the anisotropy parameter). 

The remainder of this article is organized as 
follows: In Section 2, we outline our CCM analysis 
for the spin-lattice models. We then first discuss in 
Section 3 two particular truncation schemes, 
namely, the so-called  SUB^ scheme and a further 
subapproximation to it, namely, the SUB n-rn 
scheme. These schemes are particularly useful for 
motivating the later introduction in Section 4 of 
the systematic local approximation, namely, the 
L S U B ~  scheme, which we employ to obtain with 
high accuracy the ground-state properties as func- 
tions of the anisotropy parameter. The critical be- 
havior is investigated by calculating the anisotropic 
susceptibility as a function of the anisotropy pa- 
rameter, using the same extrapolation rules previ- 
ously determined heuristically in the su~2-rn 
scheme. We conclude this article by a discussion in 
Section 5. 

2. The CCM Formalism for 
Spin-Lattice Models 

Since the details of our CCM analysis for the 
spin-lattice models have been published earlier [ 6, 

81, we only briefly discuss our approach in this 
section. We study the following anisotropic 
Heisenberg Hamiltonian (which is also referred to 
as the XXZ model in the literature): 

H = C C [As,Zs,Z+, 
r=i ,-i 

on a bipartite lattice, where the index I runs over 
all N (+ 03) lattice sites with the usual periodic 
boundary condition imposed; the index p runs 
over all z nearest-neighbor sites ( z  = 2 and 4 for 
the 1~ and 2D models, respectively); the operators 
s;' and s: (= s; +_ isf) are spin operators obeying 
the usual angular momentum commutation rela- 
tions; and A is the anisotropy parameter. In the 
special cases, A = 0, 1/03, the corresponding 
Hamiltonians of Eq. (2.1) are referred to as the 
planar XY model, the isotropic Heisenberg model, 
and the Ising model, respectively. 

For the XY model (A = O), the spins align in 
the xy plane. However, in the limit A -+ 03 (the 
Ising model), the Hamiltonian has two degenerate 
ground states, each of which is given by two 
alternating sublattices, one with all spins down 
(i.e., along the -z-axis) and the other with all 
spins up (i.e., along the +z-axis). Either one of 
these two states is referred to as the N6el state. We 
study the Hamiltonian of Eq. (2.1) from the large-A 
side. Therefore, we choose one NCel state as our 
model state I@.>, and the quantum correlation 
effects are incorporated by considering the multi- 
spin-flip excitations with respect to this model 
state. For clarity, we use the vector indices (i} 
exclusively to label the sites of the spin-down 
sublattice and the vector indices { j }  exclusively for 
the sites of the spin-up sublattice. The CCM ansatz 
for the ground ket state is therefore given by 

with the correlation operators S,, defined by 

(2.3) 
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where we have restricted ourselves to the con- 
served sector of zero total z-component of spin, 
sits, = s;, by including only those configura- 
tions with equal numbers of spin-flips on both 
sublattices. 

The ground bra state (+,I within the CCM is 
correspondingly written as 

with 

for the ket-state coefficients (3,. , , i,, j l . .  , jn}, and 

(@IS[ H ,  s;s; ... s;sis; * * .  SJ I@.> 
= 0; V n ,  (2.10) 

for the bra-state coefficients {$,,, , ',, I , .  , , I with the 
ket-state coefficients as known input. 

Once the ground states are determined, the 
ground-state energy E, is obtained as a function of 
these ground-state coefficients, namely, 

By definition, it is easy to see that we have the 
explicit normalization 

The c-number coefficients {Pl1 

by the usual variational principle, namely, 
} of Eqs. (2.3) and (2.5) are determined 2, ' . I1  1. 

= 0; 
6 ( H )  

'm, 11 1. 

where the symbol ( . . . ) denotes the expectation 
value taken with respect to the ket state I*,) and 
the bra state (@,I. Each of the above equations 
always involves the Hamiltonian in the similarity- 
transformed form, namely, 

where the expansion series actually terminates at 
the fourth-order term [6] for the Hamiltonian of 
Eq. (2.1). Furthermore, Eq. (2.7) can be written 
more explicitly as 

<@,lSIi ,S'I ,  ... s;s+s+ " I1 12 .*. siHI@) 
= 0; V n ,  (2.9) 

where in the second equality we have used Eq. 
(2.9). Hence, one sees that the determination of E,  
involves the ket-state coefficients only. For the 
spin- models of Eq. (2.1), it is easy to derive the 
following exact energy equation: 

z _ -  E g  - - - ( A  + 2b,), 
N 8 

(2.12) 

where b, = q., i +  is the nearest-neighbor pair cor- 
relation coefficient, and z = 2 and 4 for the 1~ 
chain and the 2~ square lattice, respectively. We 
note that b, is independent of both index i by 
translational invariance and index p by the lattice 
symmetries under rotations and reflections. The 
equation for b,, which is obtained from Eq. (2.9) 
with n = 2, couples to the four-spin-flip coeffi- 
cients (ei., j j s } .  The equations for these four-spin- 
flip coefficients then couple to the six-spin-flip 
coefficients {9$i,f, j j r r } ,  and so on. There are a 
number of practical approximation schemes avail- 
able that truncate this otherwise infinite hierarchy. 
We discuss some of them in the following sections. 

3. The  SUB^ Scheme 

The most common truncation scheme for the 
correlation operators S and s of the CCM is per- 
haps the  SUB^ scheme which includes all correla- 
tions involving n or fewer multispin flips with 
respect to the Nkel model state and which sets to 
zero those coefficients in Eqs. (2.3) and (2.5) in- 
volving more than n spin flips. We take the  SUB^ 
scheme as an example. One writes the two-body 
coefficients as zsj = b,, where r = rj - ri, by mak- 
ing use of the lattice symmetries, and where ri and 
ri are the position vectors of lattice sites i and j ,  
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respectively. The corresponding equation for b, is 
derived from Eq. (2.9) with n = 2 as 

2 [(l  + 2Ab1 + 2b:)6,,, 
p= 1 

where rp is a lattice vector joining nearest-neighbor 
sites. Equation (3.1) has a physical analytical solu- 
tion, found by sublattice Fourier transformation 
[61, given by 

where d is the dimensionality of the lattice system 
and 

K = A + 2b,, 

1 + 2Ab1 + 2b: 
KZ 

1 =  

k 2  = 
I 

y 9 E - C e'rp'q. (3.3) 

In Eq. (3.2), one obtains a self-consistency equation 
for b, by setting r = rp, any one of the nearest- 
neighbor lattice vectors. Substituting this value for 
b, into the energy equation (2.12), one obtains the 
ground-state energy as a function of A. We note 
that, in Eq. (3.2), k = 1 is a physical terminating 
point because there is no real solution when k > 1. 
This point determines the critical anisotropy A,, 
which was positively identified by us [6] as corre- 
sponding to the s u ~ 2  approximation to the phase 
transition point between the Ising-like and planar 
XY-like phases, from a calculation of the spin-wave 
spectrum, staggered magnetization, and spin-spin 
correlation function within the same  SUB^ scheme. 

For example, we obtained A, = 0.3728 and 
0.7975 at this SUB2 level for the 1~ and 2~ models, 
respectively. We note that for the 1~ case the exact 
analysis [13] shows a phase transition at A = 1, 
whereas no analytical results are known for the 
corresponding 2D model. We now focus on the 
behavior near the critical point A, for the 2~ case. 
It is easy to show that the ground-state energy 
behaves in the  SUB^ scheme as 

= p = l  

where x 3 A,/A. Therefore, the anisotropic sus- 
ceptibility x,, which is defined by 

clearly shows a singular behavior at Ac, namely, 
x, a (1 - x2) - ' ,  with the critical exponent h = 
1/2. This critical behavior agrees with the predic- 
tion of spin-wave theory [MI. This is not surpris- 
ing because both the  SUB^ scheme of the CCM and 
spin-wave theory include only two-body correla- 
tions. 

In general, it is difficult to obtain analytical 
solutions beyond the  SUB^ scheme discussed above. 
To include the effects of higher-order multispin 
correlations (i.e., four-spin and six-spin correla- 
tions, etc.), we developed a different local trunca- 
tion approximation which efficiently includes the 
most important multispin-flip configurations. This 
local approximation is to be discussed in the fol- 
lowing section. Here, as a first step and as guid- 
ance to the later discussion, we consider a local 
two-body approximation, the so-called su~2-rn 
scheme, in which one includes only the two-body 
correlations spanning a range of no more than rn 
adjacent lattice sites. We may then investigate by 
making an extrapolation from the results of the 
sUB2-rn scheme to estimate the full SUB2 results. 
The analytical solution of the full  SUB^ scheme 
thereby provides a stringent test for the extrapola- 
tion rules which will play an important role in the 
ensuing local approximations. 

By definition, the su~2-2 scheme in all dimen- 
sionalities retains only a single coefficient, b,, and 
the suB2-4 scheme retains two coefficients on the 
1~ chain but three coefficients on the 2D square 
lattice. We again focus on the 2D model. The three 
2D suB2-4 configurations are illustrated in Figure 1. 
The corresponding equations are 

1 - 6Ab, - 5b: + 4(b;I2 + 14(b$ 

+ 2b1b," + 12b1b3b + Sb,"b,b = 0, (3.6) 

-8Ab," + b: + 8(bi)2 - 8bib;  + 8b1b,b = 0, (3.7) 

-SAb,b + 3b: + 6(b;l2 - 4b,b; 

- 2b1b,b + Sb,"b,b = 0. (3.8) 

In a similar fashion, we derived the suB2-rn equa- 
tions for the 2D model with rn I 1 4 .  The su~2-14 
scheme, for example, contains 28 independent 
two-spin-flip configurations. More generally, the 
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(b) 
FIGURE 1. (a) The nine independent configurations 
retained in the 1 D LSUSG scheme. The first column 
constitutes the 1 D LsuB4 scheme. (b) The seven 
independent configurations retained in the 213 L S U B ~  
scheme. The three configurations in the first row 
represent the coefficients b,, b;, and b i  of the sus2-4 
scheme. The crosses indicate the positions of the spins 
which are flipped with respect to the N6el model state. 

2D SUB2-m approximation retains m(m + 2)/8 in- 
dependent spin-flip configurations with respect to 
the Nbel model state. By taking the derivatives 
with respect to A in the corresponding coupled set 
of equations [cf., Eqs. (3.6H3.8) in the case of 
m = 41, one can easily solve for d 2 b , / d A 2 ,  which 
yields the values of x, as a function of A by Eq. 
(3.5). We find that for each value of m 2 4 in the 
suB2-m scheme the corresponding x, shows a crit- 
ical behavior at a different value of the anisotropy, 
A = A,, , ,  but always with the same value of the 
critical exponent, namely, A = 3/2. This suggests 
the following expansion series for the ground-state 
energy in the sus2-m scheme ( m  2 4) near the 
corresponding critical point: 

A, + Bnl(l  - X 2 >  

+D,(l - x 2 ) 3 / 2  + - * .  , x + 1, (3.9) 

where A,,,, B,, C,, D,,. . ., are all constants, and 
x = An1/A.  Furthermore, our numerical results 
clearly show that as m increases the constants B, 
decrease rapidly in the asymptotic form B, a 
l / m 2  as m + a. We therefore conclude that B, .--) 

0 as m --j cz and the critical term in the series Eq. 
(3.9) is determined by the fourth term with the 
constant D,,,. Hence, the result A = 1/2 of the full 
SUB2 scheme is recovered. We also find that the 
values A,,, of the su~2-m scheme seem to fit a 

simple asymptotic l / m 2  rule very well, namely, 
A, + A= + a/m2 as m + m, with the parameter a 
as a constant. Using this rule and the su~2-m val- 
ues with m I 14, we obtain a least-squares fit 
Am = 0.798 _+ 0.002, which agrees well with the 
exact value 0.7985 of the analytical result of the 
full  SUB^ scheme mentioned earlier. It should be 
pointed out that the numerical results of the 
ground-state energy in the su~2-m scheme are also 
well fitted by a similar asymptotic l / m 2  rule. 

We next discuss the behavior of the order pa- 
rameter, namely, the staggered magnetization, 
within the SUB2 and  SUB^-m schemes. The stag- 
gered magnetization is defined as 

(3.10) 

where M Z  is independent of the lattice index 1 
due to the lattice translational invariance and 
where the expectation value is taken with respect 
to ground ket and bra states. One clearly now 
needs to calculate the bra state also. The bra ground 
state in the CCM is parametrized by Eqs. (2.4) and 
(2.5), and the corresponding bra-state coefficients 

I , , ,  I1 J ,  within the same approximation 
scheme as for the ket-state coefficients 

are determined by a similarly trun- 
cated coupled set of Eqs. (2.10), taking the ket-state 
coefficients as the known input. In the full SUB2 
scheme, we obtained M z  = 0 and 0.682 for the 1~ 
and the 2~ models, respectively, at their corre- 
sponding critical points A, [6]. (The exact 1~ result 
[13] yields M z  = 0 at the critical point.) We again 
extrapolate the results for M z  in the 2D sus2-m 
scheme. We find that the sus2-m results for M z  
now follow an asymptotic l / m  rule, by compari- 
son with the corresponding l / m 2  rule mentioned 
above for the critical anisotropy A, and for the 
ground-state energy. Using this same l / m  rule, 
we obtain a least-squares fit M' = 0.688 k 0.006 
for the large-m asymptotic value of the 2D model 
at the critical point, using the suB2-m values with 
m s 14, which again agrees well with the analyti- 
cal full 2D SUB2 solution. 

One sees that the above extrapolation rules for 
the local sus2-m scheme provide an efficient and 
reliable means to obtain the full SUB2 (i.e., Sus2-x) 
results, even including results for the critical prop- 
erties. In the following section, we discuss a sys- 
tematic local approximation scheme involving 
high-order multispin correlations, using similar ex- 
trapolation rules. 

{q, I , , ,  11 
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4. The L S U B ~  Scheme 

A. GROUND-STATE ENERGY 

The L S U B ~  scheme was developed by us for 
particular use with lattice models containing only 
short-range interactions, such as the spin-lattice 
models under discussion [61. In the umrn scheme, 
one includes all possible many-body correlations 
over a specified locale on the lattice, with rn, the 
nominal index, characterizing the maximum size 
of the locale retained at this particular order. Thus, 
for spin- $ systems, the L S U B ~  scheme retains only 
k-spin-flip configurations for S and s’ with respect 
to the N6el model state with k I rn and, further- 
more, where all retained configurations extend 
over no more than m contiguous sites on the 
lattice. For example, the L S U B ~  and L S U B ~  schemes 
for the spin-$ 1~ model retain three and nine 
independent configurations, respectively, as shown 
in Figure l(a). We derived a general formula for 
the number of independent coefficients of a given 
LSUBm scheme in the 1~ case [61. For the 2~ spin- 5 
case, the number of independent configurations 
within the same L S U B ~  scheme is obviously much 
larger than is the corresponding 1~ case. In Figure 
l(b), we show the seven configurations of the 
L S U B ~  scheme on the 2~ square lattice. It should be 
pointed out that the L S U B ~  scheme is also strongly 
motivated by the expectation that in the Ising limit 
(A + m) it reproduces the large-A perturbation 
series for the ground-state energy out to terms of 
(2 m)th order. This expectation has been explicitly 
proven for the 1~ LSUBm scheme [61. 

It is obvious that for higher-order approxima- 
tions the manual derivation of these coupled sets 
of equations is very tedious indeed. Fortunately, 
this labor can easily be automated by the use of 
computer-algebraic techniques. To this end, we 
developed our own software using the language 
C + + . Also, we applied standard computer alge- 
bra systems to check our results independently. 
The computer-algebraic techniques have enabled 
us to carry out calculations to quite high orders. 
For example, we derived the CCM equations in the 
full SUB6 scheme for the spin- f anisotropic Heisen- 
berg model on a general bipartite lattice. (The full 
SUB4 equations were published earlier by us [6].) 
We also remark that Harris [71 recently derived, 
for the 2D isotropic model (A = 11, both the full 
SUM equations and also the corresponding equa- 

tions involving a subset of the six-spin-flip config- 
urations, although he applied a different trunca- 
tion scheme to that employed here.* For the L S U B ~  
schemes, we derived and solved the coupled equa- 
tions as functions of A for rn I 10 for the l~ 
model and for rn I 6 for the 2~ model. The num- 
bers of independent spin-flip configuration coeffi- 
cients retained in the 1~ L S U B ~ O  and 2~ L S U B ~  
schemes are 81 and 72, respectively. 

We show some of our numerical results for the 
ground-state energies for the 1~ model in Table I 
and for the 21, model in Table I1 and Figure 2. One 
sees that the results from our high-order calcula- 
tions are in excellent agreement with the exact 
results from the Bethe ansatz [13] in the 1~ case 
and with the much more computationally inten- 
sive results of Monte Carlo calculations [161 in the 
2D case. In particular, after using the asymptotic 
l / m 2  rule which fits our LSuBrn results well, we 
obtain the value -0.4431 f 0.0001 for the 
ground-state energy per spin of the isotropic (A = 

1) 1~ model, using the results from the LsuBm 
schemes with rn = 4,6,8,10 to perform a least- 
squares fit to this simple asymptotic form. By 
comparison, the exact value from the Bethe ansatz 
is -0.4432 to an accuracy of four significant fig- 
ures. For the isotropic 2D model, our similarly 
extrapolated result is -0.6691 f 0.0003, which is 
in excellent agreement both with Monte Carlo cal- 
culations yielding -0.6692 f 0.0002 [14] and 
-0.66934 f 0.00004 [15] and with the value 
-0.6694 f 0.0001 from the series expansion tech- 
niques [17]. 

B. ANISOTROPIC SUSCEPTIBILITY 

As mentioned earlier, we studied the quantum 
critical behavior of the spin systems by calculating 
the anisotropic susceptibility xa, defined by Eq. 
(3.5). Since the coupled sets of equations in a 
truncation scheme of the CCM, such as the L S U B ~  
scheme, are always derived explicitly in terms of 
finite-order multinomials of the multispin-flip con- 

*We have been unable to reproduce precisely Harris’ results 
[7] involving four-spin-flips. Indeed, we performed two inde- 
pendent calculations, using different computer-algebraic tech- 
niques, for the same approximation used by Harris for the 
truncated  SUB^ scheme. We obtain results which agree precisely 
with each other, but which do not precisely agree with those 
quoted by Harris. Furthermore, his results including terms 
involving six-spin-flip configurations are based upon a further 
uncontrolled approximation in his corresponding six-body 
equations. For these reasons, we do not compare his results 
with ours. 
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TABLE I 
Ground-state energy per spin for several values of A for the 10 model in the L S U B ~  scheme and the 
extrapolated value (“LsuB~”) using the L S U B ~  results with m = 4,6,8, lo; the exact results by Bethe ansatz 
are also shown for commrison. 

A 
0.0 0.5 1 .o 1.5 2.0 5.0 

______ ~~~ 

LSUS2 - 0.2887 - 0.3421 - 0.41 67 
LSUB4 - 0.31 93 - 0.3692 - 0.4363 
LSUB6 -0.3198 - 0.3730 - 0.4400 
L S U S ~  - 0.31 96 - 0.3741 - 0.441 4 
LSUB~ 0 - 0.31 96 - 0.3745 - 0.4420 

- 0.4431 
Exact - 0.31 83 - 0.3750 - 0.4432 

- - 
I‘ LSU 1303’’ 

figuration coefficients, one can straightforwardly 
take the derivatives analytically with respect to the 
anisotropy parameter A on both sides of the equa- 
tions (again using computer-algebraic techniques), 
and one can thus solve directly for d 2 b , / d A z .  We 
show the computed behavior of xa as a function of 
A in Figures 3 and 4 for the 1~ and 2D cases, 
respectively. It is clear that there is no observed 
singular behavior for the 1~ model. This is not 
surprising because the exact results by the Bethe 
ansatz give an essential singularity at A = 1 for 
which every finite order of the derivative is contin- 
uous [13]. However, for the 2D model, the LSuB4 
and ~ s u s 6  results clearly show a singular behavior. 
Interestingly, as in the su~2-rn scheme, both LsuB4 
and Lsus6 schemes yield the same exponent A = 

3/2, although their critical values A,,, are quite 
different, with A4 = 0.577, A, = 0.766. Tlus sug- 
gests the expansion series for the energy when 
A + A ,  is the same as in Eq. (3.9). Again, as in the 
sus2-rn scheme, the constant B, in the ~suB6 scheme 
is much smaller than is the corresponding B, of 
the I S U B ~  scheme. From the analysis of the suB2-rn 

- 0.5069 - 0.6076 - 1.2986 
- 0.51 95 - 0.61 55 - 1.2995 
- 0.521 8 - 0.61 67 - 1.2995 
- 0.5226 - 0.61 70 - 1.2995 
- 0.5230 -0.6171 - 1.2995 
- 0.5236 - 0.61 71 - 1.2995 
- 0.5234 - 0.61 72 - 1.2995 

scheme discussed in Section 3, we conclude that 
B,  + 0 as rn + 00. Similarly, the critical exponent 
A = 1/2 is also expected for the L S U B ~  scheme 
with rn + 00. We determine the critical anisotropy 
A t  using the same assumed l /m2  asymptotic rule. 
Using the critical values A4 and A6 from the L S U B ~  

and ~suB6 schemes, respectively, we obtain Ac = 
0.92, which is smaller than the value of 1 from 
spin-wave theory [18]. Clearly, it is now of great 
interest to perform calculations involving higher- 
order multispin correlations (e.g., LSUB rn calcula- 
tions with rn > 6) in order to confirm this differ- 
ence. 

C. STAGGERED MAGNETIZATION 

To calculate the staggered magnetization, de- 
fined by Eq. (3.101, we need to determine also the 
bra-state coefficients in the LSUB rn scheme. We 
carried out such calculations in the L S U B ~  scheme, 
again using computer-algebraic techniques for both 
the 1~ and 2~ models. As expected, the exact 

TABLE II 
Ground-state energy per spin for several values of A for the 20 model in the L S U B ~  scheme; also included are 
the results from the extrapolation (“LsuB~”). 

A 
0.9 1 .o 1.5 2.0 3.0 5.0 

LSUB2 -0.6111 - 0.6483 - 0.8550 - 1.0806 - 1.5547 - 2.5332 
LSUS4 -0.6310 - 0.6637 - 0.8604 - 1.0831 - 1.5555 - 2.5333 
LSUB6 - 0.6364 - 0.6670 - 0.861 0 - 1.0833 - 1.5555 - 2.5333 
“LSUB=” - 0.6388 - 0.6691 - 0.861 9 - 1.0835 - 1.5555 - 2.5333 
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FIGURE 2. Ground-state energy per spin as a function 
of A for the 213 model. Shown are the numerical results 
of the L S U B ~  scheme and of a Monte Carlo calculation 
11 61. 

A 

essential singularity 1131 for M z  at A = 1 in the 1~ 
model is not reproduced by our ~smm scheme, 
even with values of m as high as 10. For the 2~ 
model, our results for M" from the L S U B ~  scheme 
show a nonzero value even at the corresponding 
critical points, in agreement with other calcula- 
tions [14, 17, 181. In particular, at the isotropic 
point A = 1, we obtain values M z  = 0.8514,0.7648, 
and 0.7278 from the LSUB~, uUB4, and ~ s m 6  
schemes, respectively. Using our heuristically de- 
termined l / m  rule for extrapolation, we find a 
least-squares best estimate M Z  = 0.68 f 0.01 at A 
= 1. This value is again in good agreement with 
the corresponding values 0.606 from spin-wave 
theory [18] and 0.62 f 0.02 from series expansion 
techniques [17]. The best of the corresponding 
Monte Carlo results [14] vary between 0.68 f 0.02 
and 0.62 f 0.04. 

5. Conclusions 

In this article, we performed a systematic series 
of CCM calculations involving high-order multispin 
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FIGURE 3. Anisotropic susceptibility of the 1 D model 
as a function of A. Shown are the results of the L S U B ~  
scheme. 
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FIGURE 4. Anisotropic susceptibility of the 2~ model 
as a function of A .  Shown are the results of the LSuBm 
scheme. 
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correlations for the spin- $ anisotropic Heisenberg 
models on the 1~ chain and the 2~ square lattice. 
The ground-state energy of the 1~ model from our 
CCM calculations agrees very well with the exact 
results of Bethe [13]. The ground-state properties 
of the 2 D  model are also in excellent agreement 
with other state-of-the-art calculations [ 14, 15, 171. 
Furthermore, our CCM analyses provide a system- 
atic means to study the critical behavior of the spin 
systems. It particularly allows us to calculate di- 
rectly the important anisotropic susceptibility. 

As is well known, the CCM also provides a 
formalism for the calculation of excited states. Our 
earlier SUB2 calculation [6] for the anisotropic 
Heisenberg models produced similar spin-wave 
excitation spectra to those of spin-wave theory 
[MI. We are currently investigating the effects of 
high-order multispin correlations for the excitation 
energy gap. 

Finally, we note that the isotropic Heisenberg 
model on the 2~ square lattice is itself a limiting 
form of the electronic Hubbard model at half-fill- 
ing. It will be of great interest to apply our tech- 
niques to study high-temperature superconductiv- 
ity via the Hubbard models at less than half-filling 
[121, where Monte Carlo techniques encounter the 
well-known difficulty of the ferrnion sign problem. 
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