346 research outputs found

    Surface Grafting of Poly(L-glutamates). 2. Helix Orientation

    Get PDF
    In this paper the average helix orientation of surface-grafted poly(γ-benzyl L-glutamate) (PBLG), poly(γ-methyl L-glutamate) (PMLG), and poly(γ-methyl L-glutamate)-co-(γ-n-stearyl L-glutamate) (PMLGSLG 70/30) was investigated by means of FT-IR transmission spectroscopy. The theoretical relation between the average tilt angle (θ) and the absorption peak areas of three different backbone amide bands could be calculated because their transition dipole moment directions with respect to the helix axis were known. From the normalized absorptions, the average tilt angles of grafted helices of PBLG, PMLG, and PMLGSLG 70/30 were determined. The somewhat larger average angle of PMLG helices of 35 ± 5° with respect to the substrate compared to the value of 32 ± 5° of PBLG was due to the higher grafting density of PMLG. Because of the smaller helix diameter as a result of the smaller size of the methyl side group, more PMLG helices grew on the same surface area. Sterical hindrance and unfavorable polar interactions between unidirectional aligned helices forced the PMLG helices in a more upright arrangement. The even more perpendicular orientation of PMLGSLG 70/30 (48 ± 6°) could be the result of incorporation of mainly γ-methyl L-glutamate N-carboxyanhydride (MLG-NCA) monomers during the initiation step. Incorporation of the much larger γ-n-stearyl L-glutamate N-carboxyanhydride (SLG-NCA) monomers afterward lead to enlarged angles with respect to the substrate. Due to swelling, a pronounced change in helix orientation of grafted PMLGSLG 70/30 in n-hexadecane was observed, resulting in an almost perpendicular helix orientation.

    Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors

    Get PDF
    Liquid argon time projection chamber technology is an attractive choice for large neutrino detectors, as it provides a high-resolution active target and it is expected to be scalable to very large masses. Consequently, it has been chosen as the technology for the first module of the DUNE far detector. However, the fiducial mass required for far detectors of the next generation of neutrino oscillation experiments far exceeds what has been demonstrated so far. Scaling to this larger mass, as well as the requirement for underground construction places a number of additional constraints on the design. A prototype 35-ton cryostat was built at Fermi National Acccelerator Laboratory to test the functionality of the components foreseen to be used in a very large far detector. The Phase I run, completed in early 2014, demonstrated that liquid argon could be maintained at sufficient purity in a membrane cryostat. A time projection chamber was installed for the Phase II run, which collected data in February and March of 2016. The Phase II run was a test of the modular anode plane assemblies with wrapped wires, cold readout electronics, and integrated photon detection systems. While the details of the design do not match exactly those chosen for the DUNE far detector, the 35-ton TPC prototype is a demonstration of the functionality of the basic components. Measurements are performed using the Phase II data to extract signal and noise characteristics and to align the detector components. A measurement of the electron lifetime is presented, and a novel technique for measuring a track\u27s position based on pulse properties is described

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    A side-by-side comparison of Daya Bay antineutrino detectors

    Get PDF
    The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle θ13\theta_{13} with a sensitivity better than 0.01 in the parameter sin22θ13^22\theta_{13} at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure

    Molecular fluorescence above metallic gratings

    Get PDF
    P. Andrew and William L. Barnes, Physical Review B, Vol. 64, article 125405 (2001). "Copyright © 2001 by the American Physical Society."We present measurements of the fluorescence of emitters located in close proximity (d<λ) to metallic grating surfaces. By measuring both the spontaneous emission lifetime and angle-dependent radiation pattern of a monolayer of dye molecules as a function of their separation from planar and periodically corrugated mirrors of increasing modulation depth, we are able to examine the effect of varying the surface profile on the emission process. Both the distance dependence of the lifetime and the spatial distribution of the emitted light are significantly changed upon the introduction of a corrugation, quite apart from the appearance of the familiar Bragg-scattered bound-mode features. It is postulated that these perturbations arise from the interference of the grating scattered dipole fields with the usual upward propagating and reflected fields. In addition, the measurement of nonexponential decay transients for the deepest gratings examined provide evidence for the existence of optically dissimilar dipole positions above the grating surface

    Observation of electron-antineutrino disappearance at Daya Bay

    Full text link
    The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle θ13\theta_{13} with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GWth_{\rm th} reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43,000 ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R=0.940±0.011(stat)±0.004(syst)R=0.940\pm 0.011({\rm stat}) \pm 0.004({\rm syst}). A rate-only analysis finds sin22θ13=0.092±0.016(stat)±0.005(syst)\sin^22\theta_{13}=0.092\pm 0.016({\rm stat})\pm0.005({\rm syst}) in a three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let

    Development of a validated patient-reported symptom metric for pediatric Eosinophilic Esophagitis: qualitative methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous attempts to measure symptoms in pediatric Eosinophilic Esophagitis (EoE) have not fully included patients and parents in the item development process. We sought to identify and validate key patient self-reported and parent proxy-reported outcomes (PROs) specific to EoE.</p> <p>Methods</p> <p>We developed methodology for focus and cognitive interviews based on the Food and Drug Administration (FDA) guidelines for PROs, the validated generic PedsQL™ guidelines, and the consolidated criteria for reporting qualitative research (COREQ). Both child (ages 8-12 and 13-18) and parent-proxy (ages 2-4, 5-7, 8-12, and 13-18) interviews were conducted.</p> <p>Results</p> <p>We conducted 75 interviews to construct the new instrument. Items were identified and developed from individual focus interviews, followed by cognitive interviews for face and content validation. Initial domains of symptom frequency and severity were developed, and open-ended questions were used to generate specific items during the focus interviews. Once developed, the instrument construct, instructions, timeframe, scoring, and specific items were systematically reviewed with a separate group of patients and their parents during the cognitive interviews.</p> <p>Conclusions</p> <p>To capture the full impact of pediatric EoE, both histologic findings and PROs need to be included as equally important outcome measures. We have developed the face and content validated Pediatric Eosinophilic Esophagitis Symptom Score (PEESS™ v2.0). The PEESS™ v2.0 metric is now undergoing multisite national field testing as the next iterative instrument development phase.</p
    corecore