16,505 research outputs found

    Barrier island erosion and overwash study -- effect of seawalls. Volume 2

    Get PDF
    This is the second of a pair of reports documenting the effects of storms on beach systems including the presence of seawalls. With the aim of simulating the effects of overwash on barrier islands with seawalls and characterizing their response, a series of eight experiments was conducted at the Coastal Engineering Laboratory of the University of Florida. The barrier island was simulated by a 400 feet wide horizontal crest and an initially uniform mildly-sloped (1:19) beach. The effects of positioning the seawall at two different locations as well as the effects of various storm surge levels and accompanying overtopping were investigated. Experiments were conducted with both regular and irregular storm waves. With the seawall located at the slope break between the crest and the sloping beach of the barrier island, and the crest of the seawall just submerged in sand, the effects on the sediment transport process were found to be minimal. For the same position of the seawall but with the crest of the seawall raised above the surrounding ground level, overtopping caused washover of sand indicating substantial transport in suspension. Increased levels of overtopping tended to accentuate bed profile changes but supress bar formation (as did irregular waves). Positioning the seawall at the Mean Sea Level shoreline caused significant scour both immediately landward as well as immediately seaward of the seawall. A prominent scour trough developed further seaward. The longshore bar was highly three-dimensional. It appears that seawalls need to be located adequately landward of the shoreline to discharge their function effectively without adverse effect to the beach. In addition, concerns for safety warrant the presence of an adequate buffer-zone between the seawall and the upland property. (61 pp.

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure

    Some considerations on coastal processes relevant to sea level rise

    Get PDF
    The effects of potential sea level rise on the shoreline and shore environment have been briefly examined by considering the interactions between sea level rise and relevant coastal processes. These interactions have been reviewed beginning with a discussion of the need to reanalyze previous estimates of eustatic sea level rise and compaction effects in water level measurement. This is followed by considerations on sea level effects on coastal and estuarine tidal ranges, storm surge and water level response, and interaction with natural and constructed shoreline features. The desirability to reevaluate the well known Bruun Rule for estimating shoreline recession has been noted. The mechanics of ground and surface water intrusion with reference to sea level rise are then reviewed. This is followed by sedimentary processes in the estuaries including wetland response. Finally comments are included on some probable effects of sea level rise on coastal ecosystems. These interactions are complex and lead to shoreline evolution (under a sea level rise) which is highly site-specific. Models which determine shoreline change on the basis of inundation of terrestrial topography without considering relevant coastal processes are likely to lead to erroneous shoreline scenarios, particularly where the shoreline is composed of erodible sedimentary material. With some exceptions, present day knowledge of shoreline response to hydrodynamic forcing is inadequate for long-term quantitative predictions. A series of interrelated basic and applied research issues must be addressed in the coming decades to determine shoreline response to sea level change with an acceptable degree of confidence. (PDF contains 189 pages.

    Influence of base and photoacid generator on deprotection blur in extreme ultraviolet photoresists and some thoughts on shot noise

    Get PDF
    A contact-hole deprotection blur metric has been used to monitor the deprotection blur of an experimental open platform resist (EH27) as the wt % of base and photoacid generator (PAG) were varied. A six times increase in base wt % is shown to reduce the size of successfully patterned 1:1 line-space features from 52 to 39 nm without changing deprotection blur. Corresponding isolated line edge roughness is reduced from 6.9 to 4.1 nm. A two times increase in PAG wt % is shown to improve 1:1 line-space patterning from 47 to 40 nm without changing deprotection blur or isolated line edge roughness. A discussion of improved patterning performance as related to shot noise and deprotection blur concludes with a speculation that the spatial distribution of PAG molecules has been playing some role, perhaps a dominant one, in determining the uniformity of photogenerated acids in the resists that have been studied. © 2008 American Vacuum Society

    Continuum Derrida Approach to Drift and Diffusivity in Random Media

    Full text link
    By means of rather general arguments, based on an approach due to Derrida that makes use of samples of finite size, we analyse the effective diffusivity and drift tensors in certain types of random medium in which the motion of the particles is controlled by molecular diffusion and a local flow field with known statistical properties. The power of the Derrida method is that it uses the equilibrium probability distribution, that exists for each {\em finite} sample, to compute asymptotic behaviour at large times in the {\em infinite} medium. In certain cases, where this equilibrium situation is associated with a vanishing microcurrent, our results demonstrate the equality of the renormalization processes for the effective drift and diffusivity tensors. This establishes, for those cases, a Ward identity previously verified only to two-loop order in perturbation theory in certain models. The technique can be applied also to media in which the diffusivity exhibits spatial fluctuations. We derive a simple relationship between the effective diffusivity in this case and that for an associated gradient drift problem that provides an interesting constraint on previously conjectured results.Comment: 18 pages, Latex, DAMTP-96-8

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n≤19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n−6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    • …
    corecore